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Regret testing: learning to play Nash equilibrium without
knowing you have an opponent
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A learning rule is uncoupled if a player does not condition his strategy on the
opponent’s payoffs. It is radically uncoupled if a player does not condition his
strategy on the opponent’s actions or payoffs. We demonstrate a family of sim-
ple, radically uncoupled learning rules whose period-by-period behavior comes
arbitrarily close to Nash equilibrium behavior in any finite two-person game.
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1. LEARNING EQUILIBRIUM

Although Nash equilibrium is the central solution concept in game theory, it has proved
difficult to find adaptive learning rules that invariably lead to Nash equilibrium from
out-of-equilibrium conditions. Of course, there exist particular rules, such as fictitious
play, that work for particular classes of games, such as zero-sum games and potential
games. And there exist sophisticated Bayesian updating procedures that lead to Nash
equilibrium in any game provided that players’ strategies and beliefs are sufficiently
aligned at the outset.1 The issue we consider here is whether there exist simple adaptive
procedures that solve the “learning to play Nash” problem for general games without
making large demands on the players’ computational capacities and without imposing
special initial conditions.
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1In a Bayesian framework, convergence to Nash equilibrium occurs with probability one provided that
players’ repeated-game strategies are optimal given their beliefs, and their beliefs put positive probability
on all events that have positive probability under their strategies (Kalai and Lehrer 1993). Unfortunately
it is difficult to satisfy the latter absolute continuity condition when players do not know their opponents’
payoff functions (Jordan 1991, 1993, Foster and Young 2001, Nachbar 1997, 2005).
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To date, the main results on this problem have been negative. Consider, for example,
the following criteria: i) a player’s response rule may depend on the history of the game,
but it should not depend on ex ante knowledge of the opponent’s payoff function; ii) the
rule should not depend on state variables of arbitrarily high dimensionality; iii) when all
players use the rule, their period-by-period behaviors should converge (or at least come
close) to Nash equilibrium behavior of the stage game or the repeated game.

A rule with the first property is said to be uncoupled. This is a reasonable require-
ment when the payoff structure of the game is not known precisely, which is often the
case in practice. (Moreover, if coupled learning rules were allowed, one could simply
“tailor” the learning rule to each payoff situation, and the program would amount to lit-
tle more than a theory of equilibrium selection.) The second property expresses the idea
that a rule should be simple to implement. One formulation of “simplicity”—admittedly
rather restrictive—is that a player’s behavioral response should depend only on histories
of bounded length, or alternatively on a summary statistic of the whole history, such as
the realized empirical frequency distribution (as in fictitious play). Such a rule is said to
be stationary with respect to the state variable in question. The third property says that
period-by-period behaviors should come close to Nash equilibrium; it is not enough that
the cumulative empirical frequency of play come close. (The latter is the sense in which
fictitious play converges in zero-sum games for example.)

A recent paper of Hart and Mas-Colell (2005) establishes the following impossibil-
ity theorem: when the relevant states are taken to be histories of bounded length, and
convergence is defined as almost sure convergence of the period-by-period behavioral
probabilities to an ε-equilibrium of the stage game, then for all sufficiently small ε > 0
there is no rule satisfying the above three properties on the set of finite two-person
games.2

This impossibility result hinges crucially on a particular choice of state variable and
a demanding notion of convergence. In an earlier paper, for example, we demonstrated
a class of statistical learning procedures that are simple, uncoupled, and cause players’
behaviors to converge in probability to the set of Nash equilibria in any finite game (Fos-
ter and Young 2003). In the simplest version of this approach, each player’s state vari-
able has three components: i) the empirical frequency distribution of the opponent’s
play over the past s periods, where s is finite; ii) a “hypothesis” about what frequency
distribution the opponent is using during these periods, which is assumed to be uncon-
ditional on history; iii) a counting variable that tells whether the player is currently in
“hypothesis testing” mode and how long he has been so. Once the count reaches s , a
player conducts a hypothesis test, that is, he compares his current hypothesis with the
observed behavior of the opponent over the last s periods. If the hypothesis is not too
improbable given the data, he keeps the same hypothesis and eventually starts testing
again. Otherwise he rejects his current hypothesis and chooses a new one at random
from the finite-dimensional space of frequency distributions that the opponent could

2A related impossibility result states that if the state variable is the joint frequency distribution of play,
there exists no uncoupled, deterministic, continuously differentiable adjustment dynamic such that the
empirical frequency distribution converges to a stage-game Nash equilibrium in any finite two-person
game (Hart and Mas-Colell 2003).
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be using. Players are assumed to be boundedly rational in the sense that they choose
smoothed best responses given their current hypotheses about the opponent. By an-
nealing the parameters, it can be shown that, given any finite game, the players’ behav-
iors converge in probability to the set of Nash equilibria of the stage game.

In this paper we introduce a new type of learning rule, called regret testing, that
solves the “learning to play Nash” problem in an even simpler way. Unlike fictitious
play, hypothesis testing, Kalai–Lehrer updating, and a host of other learning rules, re-
gret testing does not depend on observation of the opponent’s pattern of play or even
on knowledge of the opponent’s existence; it depends only on summary statistics of a
player’s own realized payoffs. In this sense it is similar in spirit to reinforcement and as-
piration learning.3 Response rules that depend only on a player’s received payoffs are
said to be radically uncoupled.

In the next section we define regret testing in detail; here we briefly outline how
it works and why it avoids the impossibility theorems mentioned earlier. In each pe-
riod a player has an intended strategy, that is, a probability mixture over actions that he
plans to use in that period. With a small exogenous probability—independent among
periods and players—a given player becomes distracted and uses an alternative strat-
egy instead of his intended strategy. For simplicity assume that the alternative strategy
involves choosing each action with equal probability. Periodically the player evaluates
how his intended strategy is doing. He does this by comparing the average payoff he
received when using his intended strategy with the average payoffs he received when
distracted. If the latter payoffs are not markedly larger than the former, he continues
as before. Otherwise he switches to a new (intended) strategy, where the choice of new
strategy has a random component that assures that no region of his strategy space is
completely excluded from consideration.

The random aspect of strategy switching is crucial because it allows for undirected
search of the strategy space, and prevents the learning process from getting bogged
down in disequilibrium mutual-adjustment cycles. It also side-steps the impossibil-
ity theorem of Hart and Mas-Colell mentioned at the outset: since behavior at a given
point in time depends on the outcome of prior random variables (strategy switches), the
learning process is not stationary with respect to any of the usual state variables such as
history of play, history of payoffs, and so forth. Nevertheless, it is very simple and in-
tuitive, and under an appropriate choice of the learning parameters, causes period-by-
period behaviors to converge in probability to the set of stage-game Nash equilibria in
any finite two-person game. The method can be extended to handle generic n-person
games with finite action spaces (Germano and Lugosi 2004), but whether it works for all
finite n-person games (n ≥ 3) remains an open problem.

2. REGRET TESTING

Consider an individual who lives alone. He has m possible actions, the names of which
are written on “tickets” stored in “hats.” Each hat contains h ≥m tickets. Since a given

3Standard examples of reinforcement learning are given in Bush and Mosteller (1955) and Erev and Roth
(1998). For models of aspiration learning see Karandikar et al. (1998), Börgers and Sarin (2000), Bendor
et al. (2001), and Cho and Matsui (2005).
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action can be written on multiple tickets, a hat is a device for generating probability
distributions over actions. Every probability distribution that is expressible in integer
multiples of 1/h is represented by exactly one hat. The larger is h, the more closely can
any given distribution be approximated by one of these hats.

Step 1. A day consists of s periods, where s is large. Once each period, the player
reaches into his current hat, draws a ticket, and takes the action prescribed. He then
returns the ticket to the hat.

Step 2. At random times this routine is interrupted by telephone calls. During a call
he absent-mindedly chooses an action uniformly at random instead of reaching into the
hat.

Step 3. Every time he takes an action he receives a payoff. At the end of day t , he
tallies the average payoff, bαt , he received over the course of the day whenever he was
not on the phone. For each action j , he compares bαt with the average payoff, bαj ,t , he
received when he chose j and was on the phone.

Step 4. If at least one of the differences brj ,t = bαj ,t − bαt is greater than his tolerance
level τ > 0 he chooses a new hat, where each hat has a positive probability of being
chosen. Otherwise he keeps his current hat and the process is repeated on day t +1.

Any procedure of this form is called a regret testing rule. The reason is that bαj ,t

amounts to a statistical estimate of the payoff on day t that the player would have re-
ceived from playing action j all day long, hence the difference brj ,t = bαj ,t − bαt is the
estimated regret from not having done so.4 (Recall that the regrets cannot be evaluated
directly because the opponent’s actions are not observed.) The logic is simple: if one
of the payoff-averages bαj ,t during the experimental periods is significantly larger than
the average payoff in the non-experimental periods, the player becomes dissatisfied and
chooses a new strategy, i.e., a new hat from the shelf. Otherwise, out of inertia, he sticks
with his current strategy.

The revision process (Step 4) allows for many possibilities. The simplest is to choose
each hat with equal probability, but this lacks behavioral plausibility. Instead, the player
could exploit the information contained in the current payoffs, say by favoring strategies
(hats) that put high probability on actions with high realized payoff bαj ,t . Consider, for
example, the following revision rule: with probability 1− ε adopt the pure strategy that
puts probability one on the action j that maximizes bαj ,t ; and with probability ε choose
a strategy at random. This is a trembled form of best response strategy revision, where
the tremble is not in the implementation of the strategy but in the choice of strategy. In
particular, a strategy that is far from being a best response strategy can be chosen by
mistake, but the probability of such a mistake is small. While the use of recent payoff
information may be sensible, however, we do not insist on it. The reason is that the
process will eventually approximate Nash equilibrium behavior irrespective of the revi-
sion rule, as long as every hat is chosen with a probability that is uniformly bounded
away from zero at all revision opportunities. This allows for a great deal of latitude in
the specification of the learning process.

4A similar estimation device is used by Foster and Vohra (1993) and Hart and Mas-Colell (2000, 2001,
2005).
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We hasten to say that this rule is intended to be a contribution to learning theory,
and should not be interpreted literally as an empirical model of behavior, any more than
fictitious play should be. Nevertheless it is composed of plausible elements that are
found in other learning rules. One key element of regret testing is inertia: if there is no
particular reason to change, play continues as before. In fact, inertia is built into the rule
at two levels: there is no change of strategy while data is being collected over the course
of a day, and change is implemented only if a significant improvement is possible—in
other words, the alternative payoffs must exceed the current average payoff by more
than some positive amount τ.

Inertia is an important aspect of aspiration learning as well as several other learning
rules in the literature, including hypothesis testing (Foster and Young 2003) and regret
matching (Hart and Mas-Colell 2000, 2001). In the latter procedure, a player continues
to choose a given action with high probability from one period to the next. When change
occurs, the probability of switching to each new action is proportional to its conditional
regret relative to the current action.5 Hart and Mas-Colell show that under this proce-
dure the cumulative empirical frequencies converge almost surely to the set of corre-
lated equilibria. (Note that this is quite different from saying that the period-by-period
behaviors converge.)

A second key element of regret testing is that, when a change in strategy occurs,
the choice of new strategy has a random component that allows for wide-area search.
Except for hypothesis testing, this feature is not typical of other learning rules in the
literature. For example, under regret matching, a player’s strategy at any given time is
either almost pure or involves switching probabilistically from one almost-pure strategy
to another. Similarly, under aspiration learning, a player switches from one pure strat-
egy to an alternative pure strategy when the former fails to deliver payoffs that meet a
given aspiration level. In both of these situations there are probabilistic changes among
particular classes of strategies, but not a wide-area search among strategies.

These two elements—inertia and search—play a key role in the learning process. In-
ertia stabilizes the players’ behavior for long enough intervals that the players have a
chance to learn something about their opponent’s behavior. Search prevents the pro-
cess from becoming trapped in adjustment cycles, such as the best response cycles that
bedevil fictitious play in some settings. Intuitively, the way the process operates is that it
discovers a (near) equilibrium through random search, then stays near equilibrium for
a long time due to inertia. While it may seem obvious that this ought to work, it is a dif-
ferent matter to show that it actually does work. One difficulty is that the players’ search
episodes are not independent. Searches are linked via the history of play, so there is no
guarantee that the joint strategy space will be searched systematically. A second diffi-
culty is that, even when a search is successful and an equilibrium (or near equilibrium)
has been found, the players do not know it. This is because they are ignorant of the op-
ponent’s payoff function, hence they cannot tell when a equilibrium is in hand, and may

5The conditional regret of action k relative to action j is the increase in average per-period payoff that
would have resulted if k had been played whenever j actually was played. (The conditional regret is set
equal to zero if k would have resulted in a lower average payoff than j .)
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move away again. The essence of the proof is to show that, nevertheless, the expected
time it takes to get close to equilibrium is much shorter than the expected time it takes
to move away again.

3. FORMAL DEFINITIONS AND MAIN RESULT

Let G be a two-person game with finite action spaces X1 and X2 for players 1 and 2
respectively. Let |X i |=m i and let u i : X1×X2→R be i ’s utility function. In what follows,
we assume (for computational convenience) that the von Neumann Morgenstern utility
functions u i are normalized so that all payoffs lie between zero and one:

min
x∈X1×X2

u i (x )≥ 0 and max
x∈X1×X2

u i (x )≤ 1. (1)

Let ∆i denote the set of probability mixtures over the m i actions of player i . Let h i

be the uniform size of i ’s hats (a positive integer). The set of distributions in∆i that are
representable as integer multiples of 1/h i is denoted by Pi . Note that every strategy in
∆i can be closely approximated by some strategy in Pi when h i is sufficiently large. Let
τi > 0 denote i ’s tolerance level, let λi ∈ (0, 1) be the probability that a call is received by
a player i during any given play of the game, and let s be the number of plays per day.

The state space is Z = P1 × P2, which we sometimes refer to as the probability grid.
The state of the learning process at the start of a given day t is z t = (p t ,qt ) ∈ P1 × P2.
For each action j of player i , let bαi

j ,t = bα
i
j ,t (z t ) be the average payoff on day t in those

periods when i played action j and was on the phone. Let bαi
t = bα

i
t (z t ) be i ’s average

payoff on day t when not on the phone, and let bθ i
t = (bα

i
t , bαi

1,t , . . . , bαi
m i ,t ). Note that bθ i

t
contains enough information to implement a wide variety of updating rules, including
trembled best response behavior and trembled better response behavior. Finally, let

br i
t (z t ) = max

1≤j≤m i

bαi
j ,t (z t )− bαi

t (z t ).

A regret-testing rule for player 1 has the following form: there is a number γ1 > 0 such
that for every t and every state z t = (p t ,qt ),

br 1
t (z t )≤τ1⇒ p t+1 = p t (2)

br 1
t (z t )>τ1⇒ P(p t+1 = p | p t , bθ 1

t )≥ γ1 for all p ∈ P1.

The analogous definition holds for player 2. Note that we must have γi ≤ 1/ |Pi | be-
cause the conditional probabilities in (2) sum to unity. The case γi = 1/ |Pi | corresponds
to the uniform distribution, that is, all strategies in Pi are chosen with equal probability
when a revision occurs. The class of regret testing rules is more general, however, be-
cause it allows for any conditional revision probabilities as long as they are uniformly
bounded below by some positive constant.

A pair (p ,q ) ∈ ∆1 ×∆2 is an ε-equilibrium of G if neither player can increase his
payoff by more than ε through a unilateral change of strategy.
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THEOREM 1. Let G be a finite two-person game played by regret testers and let ε > 0. There
are upper bounds on the tolerances τi and exploration rates λi , and lower bounds on the
hat sizes h i and frequency of play s , such that, at all sufficiently large times t , the players’
joint behavior at t constitutes an ε-equilibrium of G with probability at least 1− ε.

Explicit bounds on the parameters are given in Section 5 below.

REMARK 1. It is not necessary to assume that the players revise their strategies simul-
taneously, that is, at the end of each day. For example, we could assume instead that if
player i ’s measured regrets exceed his tolerance τi , he revises his strategy with proba-
bility θi ∈ (0, 1) and with probability 1− θi he continues to play his current strategy on
the following day. We could also assume that the players use different amounts of in-
formation. Suppose, for example, that player i looks at the last k i days of payoffs (k i

integer), and revises with probability 0 < θi < 1 whenever the estimated regrets exceed
τi . With fixed values of k i and θi this does not change the conclusion of Theorem 1 or
the structure of the argument in any significant way.

REMARK 2. It is not necessary to assume that, when on the phone, a player chooses each
of his actions with equal probability. Any fixed probability distribution that assigns pos-
itive probability to every action can be employed, but in this case the sample size may
need to be larger than in the uniform case for the theorem to hold.

REMARK 3. Theorem 1 does not assert that the learning process converges to an ε-
equilibrium of G ; rather, it says that the players’ period-by-period behaviors are close
to equilibrium with high probability when t is large. By annealing the learning param-
eters at a suitable rate, one can achieve convergence in probability to the set of Nash
equilibria, as we show in the concluding section. Moreover, with some further refine-
ments of the approach one can actually achieve almost sure convergence, as shown by
Germano and Lugosi (2004). Although these are probabilistic forms of convergence, the
results are quite strong because they hold for the players’ period-by-period behaviors.
Regret matching, by contrast, only guarantees that the players’ time-average behaviors
converge, and then only to the set of correlated equilibria.6

Before giving the proof of Theorem 1 in detail, we give an overview of some of the
technical issues that need to be dealt with. Regret testing defines one-step transition
probabilities P(z → z ′) that lead from any given state z on day t to some other state z ′

on day t + 1. Since these transition probabilities do not depend on t , they define a sta-
tionary Markov process P on the finite state space Z . A given state z = (p ,q ) induces a
Nash equilibrium in behaviors if and only if the expected regrets in that state are nonpos-
itive. Similarly, (p ,q ) induces an ε-equilibrium in behaviors if and only if the expected
regrets are ε or smaller. Note that this is not the same as saying that (p ,q ) itself is an

6Other rules whose long run average behavior converges to the correlated equilibrium set are discussed
by Fudenberg and Levine (1995, 1998), Foster and Vohra (1999), and Cahn (2004). See Young (2004) for a
general discussion of the convergence properties of learning rules.



348 Foster and Young Theoretical Economics 1 (2006)

ε-equilibrium, because the players’ behaviors include experimentation, which distorts
the probabilities slightly.

If a given state z does not induce an ε-equilibrium, the realized regrets br i
j ,t are larger

than ε with fairly high probability for at least one of the players. This player then revises
his strategy. Since no strategy on his grid is excluded when he revises, there is a positive
probability he hits upon a strategy that is close to being a best response to the oppo-
nent’s current strategy. This is not good enough, however, because the new strategy pair
does not necessarily induce an ε-equilibrium. What must be shown is that the players
arrive simultaneously at strategies that induce an ε-equilibrium, a point that is not im-
mediately obvious. For example, one player may revise while the second stays put, then
the second may revise while the first stays put, and so forth.

Even if they do eventually arrive at an ε-equilibrium simultaneously, they must do
so in a reasonably short period of time compared to the length of time they stay at the
ε-equilibrium once they get there. Again this is not obvious. One difficulty is that the
players do not know when they have arrived—they cannot see the opponent’s strategy,
or even his action, so they cannot determine when an ε-equilibrium is in hand. In par-
ticular, the realized regrets may be large (due to a series of bad draws) even though the
state is close to equilibrium (or even at an equilibrium), in which case the players will
mistakenly move away again. A second difficulty is that revisions by the two players are
uncoupled, that is, they cannot coordinate the search process. In reality, however, their
searches are linked because the regrets are generated by their joint actions. Thus, the
fact that each player conducts a search of his own strategy space whenever he revises
need not imply that the joint strategy space is searched systematically.

4. ENTRY AND EXIT PROBABILITIES

The first step in proving Theorem 1 is to compare the probability of entering the set of
ε-equilibrium states with the probability of leaving them. As a preliminary, we need to
refine the concept of ε-equilibrium as follows. Given a pair of nonnegative real numbers
(ε1,ε2), say that a pair of strategies (p ,q )∈∆1×∆2 is an (ε1,ε2)-equilibrium if

∀p ′ ∈∆1, u 1(p ′,q )−u 1(p ,q )≤ ε1

∀q ′ ∈∆2, u 2(p ,q ′)−u 2(p ,q )≤ ε2.

When ε1 = ε2 = ε, we use the terms ε-equilibrium and (ε1,ε2)-equilibrium inter-
changeably. For any two real numbers x , y let x ∧ y =min{x , y } and x ∨ y =max{x , y }.
Let us also recall that m i denotes the number of actions available to player i .

LEMMA 1. Let m =m1∨m2, τ=τ1∧τ2, and λ=λ1∧λ2, and suppose that 0<λi ≤τ/8≤
1
8 for i = 1, 2. There exist positive constants a , b , and c such that, for all t ,

(i) If state z t = (p t ,qt ) is a (τ1/2,τ2/2)-equilibrium, a revision occurs at the end of
period t with probability at most a e−b s for all s .

(ii) If z t is not a (2τ1, 2τ2)-equilibrium and if s ≥ c , then at least one player revises at
the end of period t with probability greater than 1

2 ; moreover if each player i is out



Theoretical Economics 1 (2006) Regret testing 349

of equilibrium by at least 2τi , both revise at the end of period t with probability
greater than 1

4 .

It suffices that a = 12m , b =λτ2/256m , and c = 103m 2/λτ2.

REMARK 4. The proof shows, in addition, that if just one of the players, say i , can in-
crease his payoff by more than 2τi , then i revises with probability greater than 1

2 when-
ever s ≥ c . Similarly, if one of the players i cannot increase his payoff by more than τi /2,
then i revises with probability at most a e−b s . We sometimes use this unilateral version
of Lemma 1 in what follows.

The proof of Lemma 1 involves a straightforward (but somewhat tedious) estimation
of tail event probabilities, which is given in the Appendix. While it is a step in the right
direction, however, it is not sufficient to establish Theorem 1. In particular, it is not
enough to know that the process takes a long time (in expectation) to get out of a state
that is very close to being an equilibrium; we also need to know how long it takes to
get into such a state from somewhere else. What matters is the ratio between these
entry and exit probabilities. This issue is addressed by the following general result on
stationary, finite Markov chains.

LEMMA 2. Consider a stationary Markov chain with transition probability function P on
a finite state space Z . Suppose there exists a nonempty subset of states Z 0 and a state
w /∈Z 0 such that:

(i) in two periods the process moves from w into Z 0 with probability at least ρ > 0;

(ii) once in Z 0 the process stays there for at least one more period with probability at
least 1−θ .

Then for any stationary distribution π of P, we have πw ≤ 2θ/ρ.

PROOF. Let π be a stationary distribution of P . By definition πP = π, hence πP2 = π;
that is, π is also a stationary distribution of P2. Condition (i) of the lemma says that

∑

z∈Z 0

P2(w → z )≥ρ. (3)

Condition (ii) implies that the probability of staying in Z 0 for at least two successive
periods is at least 1−2θ , that is,

∀y ∈Z 0,
∑

z∈Z 0

P2(y → z )≥ 1−2θ . (4)

Since π is a stationary distribution of P2, the stationarity equations imply that

∀z ∈Z 0,
∑

y∈Z 0

πy P2(y → z )+πw P2(w → z )≤πz . (5)
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Summing inequality (5) over all z ∈Z 0 and using (3) and (4) we obtain

(1−2θ )
∑

y∈Z 0

πy +πwρ ≤
∑

z∈Z 0

πz .

Hence,
πwρ ≤ 2θ
∑

z∈Z 0

πz ≤ 2θ .

It follows that πw ≤ 2θ/ρ as claimed. �

5. PROOF OF THEOREM 1

We begin by restating Theorem 1, giving explicit bounds on the parameters. First we
need some additional notation. Given δ ≥ 0, a strategy p ∈ ∆1 is δ-subdominant for
player 1 if

∀p ′ ∈∆1,∀q ∈∆2, u 1(p ′,q )−u 1(p ,q )≤δ.

The analogous definition holds for player 2. A strategy is δ-subdominant if it is “almost”
a weakly dominant strategy (assuming δ is small). A strategy is 0-subdominant if and
only if it is a best reply irrespective of the opponent’s strategy. (This is slightly weaker
than weak dominance, because a 0-subdominant strategy is merely as good as any other
strategy without necessarily ever being strictly better). Let d (G ) be the least δ ≥ 0 such
that one or both players have a δ-subdominant strategy. Let τ = τ1 ∧ τ2, λ = λ1 ∧λ2,
γ= γ1 ∧γ2, and m =m1 ∨m2.

THEOREM 1 (restatement). Let G be a two-person game on the finite action space X =
X1 × X2 and let ε > 0. If the players use regret testing with strictly positive parameters
satisfying the following bounds, then at all sufficiently large times t their joint behavior
at t constitutes an ε-equilibrium of G with probability at least 1− ε:

τi ≤ ε2/48 (6)

τi ≤ d 2(G )/48 if d (G )> 0 (7)

λi ≤τ/16 (8)

h i ≥ 8
p

m/τ (9)

γi ≤ 1/ |Pi (h i )| (10)

s ≥ (103m 2/λτ2) ln(105m/ε2γ7). (11)

The need for some such bounds may be explained as follows. The tolerances τi

must be sufficiently small relative to ε that the players reject with high probability when
their behaviors are not an ε-equilibrium. The λi must be sufficiently small, relative to ε
and τ, that the behaviors are close to equilibrium, and rejection is very unlikely, when-
ever the state (p ,q ) is sufficiently close to equilibrium. The h i must be sufficiently large
that the state space contains points that are close to equilibrium. The γi can be no
larger than 1/ |Pi (h i )|, where |Pi (h i )| is the number of probability distributions that can
be accommodated by a hat of size h i . The amount of information collected, s , must be
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large enough that the probability of strategy revision is extremely small whenever the
behaviors are sufficiently close to equilibrium. In addition, s must be large enough for
Lemma 1 to hold, which is the case under assumption (11).

The most interesting, albeit somewhat mysterious, of these conditions is (7), which
says that the tolerances must be small relative to d (G ). Since the tolerances are always
positive, the condition states, in effect, that a given set of parameters will work for all
games G except perhaps for those such that d (G ) is positive but very small, in particular,
smaller than (48τi )1/2 for some player i .

To illustrate consider the following 2×2 coordination game:

A B
A 1, 1 1−δ, 0
B 0, 1−δ 1, 1

When δ is positive, action A is a δ-subdominant strategy for both players. When δ is
negative, A is strictly dominant for both players. We have two different lines of argument
for these situations.

When δ is negative, it can be shown that, once either player starts playing A (or a
mixed strategy that puts very high probability on A), he will continue to play this strategy
for a very long time. This gives the other player time to adjust and play a best response
(which is also A). The same argument works when δ= 0.

If δ is positive, however, we need a different argument. If the players are not very
close to some equilibrium, we want to show that they will move simultaneously to, or
close to, equilibrium within a relatively short period of time. This may not hold when
one of the players has too high a tolerance relative to δ. The reason is that it may take
him a rather long time to change strategy (i.e., to experience a regret that exceeds his
tolerance), but he might not stay put long enough for the other player to adjust. Thus we
cannot necessarily conclude that they arrive simultaneously at approximately mutual
best responses in a short period of time. While we have not found an example showing
that condition (7) is necessary for Theorem 1 to hold, we have also not been able to
devise a method of proof that gets around it. For our purposes this does not particularly
matter, because Theorem 2 exhibits an annealed version of the process that works for all
two-person games on a given finite action space (with no excluded cases). It remains an
open question whether Theorem 1 holds without imposing condition (7), in which case
a fixed set of parameters would work for all two-person games on a given finite action
space.

PROOF OF THEOREM 1. In state z = (p ,q ), player 1 is playing the strategy ep = (1−λ1)p+
(λ1/m1)~1m1 , where ~1m1 is a length-m1 vector of 1’s. Similarly, player 2 is playing eq =
(1− λ2)q + (λ2/m2)~1m2 . It follows that if (p ,q ) is an ε/2-equilibrium of G , then (ep , eq )
is an ε-equilibrium of G provided that the λi are sufficiently small. Since the payoffs
lie between zero and one (see (1)), it suffices that λ1, λ2 ≤ ε/4. This holds because of
assumptions (6) and (8).
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Let E ∗ be the set of states in Z that are ε/2-equilibria of G (ignoring experimenta-
tion). We show first that, for every stationary distribution π of the process,

∑

z /∈E ∗
πz ≤ ε/2,

or equivalently,
∑

z∈E ∗
πz ≥ 1− ε/2. (12)

From this and the preceding remark it follows that the players’ induced behaviors
(ep , eq ) constitute an ε-equilibrium at least 1− ε/2 of the time (and hence at least 1− ε of
the time).

We need to show more however: namely, that the behaviors at time t constitute an ε-
equilibrium with probability at least 1−ε for all sufficiently large times t . To see why this
assertion holds, let P be the transition probability matrix of the process. If the process
begins in state z 0, then the probability of being in state z at time t is P t (z 0→ z ), where
P t is the t -fold product of P . We claim that P is acyclic; indeed this follows from the fact
that for any state z , P(z → z ) > 0. (Recall that, whenever a player revises, he chooses
his previous strategy with positive probability.) It follows from standard results that the
following limit exists

∀z ∈Z , lim
t→∞

P t (z 0→ z ) =πz ,

and the limiting distribution π is a stationary distribution of P (Karlin and Taylor 1975,
Theorem 1.2). From this and (12) it follows that

lim
t→∞

∑

z /∈E ∗
P t (z 0→ z )≤ ε/2.

Hence

∃T ∀t ≥ T,
∑

z∈E ∗
P t (z 0→ z )≥ 1− ε.

Thus, for all t ≥ T , the probability is at least 1−ε that z t ∈ E ∗, in which case the induced
behaviors at time t form an ε-equilibrium of G . This is precisely the desired conclusion.
It therefore suffices to establish (12) to complete the proof of Theorem 1. We consider
two cases: d (G )> 0 and d (G ) = 0.

CASE 1. d (G )> 0: neither player has a 0-dominant strategy.

For every pair (p ,q )∈∆1×∆2, there exists (p ′,q ′)∈Z such that

�

�p ′−p
�

�≤
p

m1/h1 and
�

�q ′−q
�

�≤
p

m2/h2.

By the lower bound (9) on the h i , it follows that there is a point (p ′,q ′)∈Z such that

�

�p ′−p
�

�≤τ1/8 and
�

�q ′−q
�

�≤τ2/8. (13)
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Now let (p ,q ) be a Nash equilibrium in the full space of mixed strategies, ∆1 ×∆2. By
(13) there is a state e ∗ = (p ∗,q ∗) ∈Z such that

�

�p ∗−p
�

�≤ τ1/8 and
�

�q ∗−q
�

�≤ τ2/8. Since
all payoffs are bounded between zero and one, e ∗ is a (τ1/8,τ2/8)-equilibrium. In par-
ticular, e ∗ ∈ E ∗, because by (6), τ1/8 ≤ ε/2 and τ2/8 ≤ ε/2. We fix e ∗ = (p ∗,q ∗) for the
remainder of the proof of Case 1.

It follows from Lemma 1, part (i), that

P(e ∗→ e ∗)≥ 1−a e−b s . (14)

The next step is to show that for all w /∈ E ∗, the process enters E ∗ in two periods with
fairly high probability; then we apply Lemma 2.

CASE 1A. w /∈ E ∗ and each player can, by a unilateral deviation, increase his payoff by
more than ε/2.

Suppose that z t = w = (p ,q ). Since each player i can increase his payoff by more
than ε/2, he can certainly increase it by more than 2τi (because of the bound τi ≤
ε2/48). It follows from Lemma 1, part (ii) that the probability is at least 1

4 that both
players revise at the end of day t .

Conditional on both revising, the probability is at least γ2 that player 1 chooses p ∗

and player 2 chooses q ∗ in period t +1. Hence

P(w → e ∗)≥ γ2/4,

so by (14),

P2(w → e ∗)≥ (γ2/4)(1−a e−b s ).

CASE 1B. w 6∈ E ∗ and only one of the players can improve his payoff by more than ε/2.

This case requires a two-step argument: we show that the process can transit from
state w to some intermediate state x with the property that each player i can increase
his payoff by more than 2τi . As in the proof of Case 1a, it follows that P(x → e ∗)≥ γ2/4.

We now establish the existence of such an intermediate state. Assume without loss
of generality that in state w = (p ,q ), player 1 can increase his payoff by more than ε/2,
whereas player 2 cannot. In particular, if p ′ ∈∆1 is a best response to q , then

u 1(p ′,q )−u 1(p ,q )> ε/2. (15)

Let δ= d (G ): by definition neither player has a δ′-dominant strategy for any δ′ <δ.
In particular, q is not δ/2-dominant for player 2. Hence there exist p 0 ∈∆1 and q ′ ∈∆2

such that

u 2(p 0,q ′)−u 2(p 0,q )>δ/2. (16)

Consider the strategy

p ′′ = (δ/4)p +(1−δ/4)p 0. (17)
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By assumption, p ′ is a best response to q , so u 1(p ′,q )−u 1(p 0,q )≥ 0. It follows from (15)
and (17) that

u 1(p ′,q )−u 1(p ′′,q ) = (δ/4)[u 1(p ′,q )−u 1(p ,q )]

+ (1−δ/4)[u 1(p ′,q )−u 1(p 0,q )]

≥ (δ/4)[u 1(p ′,q )−u 1(p ,q )]

>δε/8. (18)

By assumptions (6) and (7), τ1 ≤ δ2/48 and τ1 ≤ ε2/48, hence 48τ1 ≤ δε, which
implies 6τ1 < δε/8. From this and (18) we conclude that, given (p ′′,q ), player 1 can
deviate and increase his payoff by more than 6τ1.

For player 2 we have, by definition of p ′′,

u 2(p ′′,q ′)−u 2(p ′′,q ) = (δ/4)[u 2(p ,q ′)−u 2(p ,q )]+ (1−δ/4)[u 2(p 0,q ′)−u 2(p 0,q )].

Since payoffs are bounded between zero and one, the first term on the right-hand side
is at least −δ/4. The second term is greater than (1−δ/4)(δ/2)> 3δ/8, by (16). Hence

u 2(p ′′,q ′)−u 2(p ′′,q )>δ/8.

Since τ2 ≤ δ2/48 < δ/48, player 2 can deviate from (p ′′,q ) and increase his payoff by
more than 6τ2. Hence (p ′′,q ) is not a (6τ1, 6τ2)-equilibrium.

Although q is on player 2’s grid, the definition of p ′′ in (17) does not guarantee that
it is on player 1’s grid. We know, however, that there exists a grid point (p ′′′,q ) such
that |p ′′′ − p ′′| ≤ pm1/h1. Since all payoffs lie between zero and one, the difference in
payoff between (p ′′′,q ) and (p ′′,q ) is at most

p
m1/h1 for both players. From (9) it follows

that
p

m1/h1 ≤ τ/8 ≤ τi /8 for both players (i = 1, 2). Since (p ′′,q ) is not a (6τ1, 6τ2)-
equilibrium, it follows that (p ′′′,q ) is not a (5τ1, 5τ2)-equilibrium (and is on the grid).

Let x = (p ′′′,q ). As in the proof of Case 1a, it follows that P(x → e ∗)≥ γ2/4. Further,
the process moves from state w to state x with probability at least γ/2, because only
player 1 needs to revise: w and x differ only in the first coordinate. Hence,

P2(w → e ∗)≥ γ3/8.

In Case 1a we found that P2(w → e ∗)≥ (γ2/4)(1−a e−b s ), which is at least γ2/8 provided
that a e−b s ≤ 1

2 . This certainly holds under the assumptions in Lemma 1 on a , b , and s .
Since γ2/8≥ γ3/8, it follows that in both cases

∀w /∈ E ∗, P2(w → e ∗)≥ γ3/8.

In both cases we also have P(e ∗ → e ∗) ≥ 1− a e−b s , by (14). Now apply Lemma 2 with
Z 0 = {e ∗}, ρ = γ3/8, and θ = a e−b s . We conclude that in both Case 1a and Case 1b, for
every stationary distribution π of P ,

∀w /∈ E ∗, πw ≤
2a e−b s

γ3/8
= 16a e−b s /γ3.
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There are at most 1/γ2 states in Z altogether, so
∑

w /∈E ∗
πw ≤ 16a e−b s /γ5.

The right-hand side is at most ε/2 if a e−b s ≤ γ5ε/32, that is, if

s ≥ (1/b ) ln(32a/γ5ε).

By Lemma 1, we can take a = 12m and b =λτ2/256m . Thus it suffices that

s ≥
256m

λτ2 ln(384m/γ5ε),

which is implied by the stronger bound in (11). This concludes the proof of Case 1.

CASE 2. d (G ) = 0; some player has a 0-dominant strategy.

Fix a probability 0<β < 1
2 that is much smaller than γ and much larger than a e−b s ;

later we specify β and s more exactly. Define the following subset of states:

Zβ = {z = (p ,q ) :∀t ,∀q ′ ∈ P2, P(p t+1 6= p | z t = (p ,q ′))≤β}.

In words, Zβ is the set of states such that the first player changes strategy with probabil-
ity at most β no matter what strategy the second player is using on his grid.

Without loss of generality assume that player 1 has a 0-dominant strategy. Then he
has a pure 0-dominant strategy, say p ∗, which is in P1. We fix p ∗ for the remainder of the
proof.

Let Z ∗ be the set of states whose first coordinate is p ∗. Then player 1 rejects with
probability at most a e−b s (see Remark 4), that is,

P(z t+1 ∈Z ∗ |z t ∈Z ∗)≥ 1−a e−b s .

Hence Z ∗ ⊆ Zβ provided that a e−b s ≤ β , which holds whenever s is sufficiently large
(we assume henceforth that this is the case).

Let w ∈Z −E ∗. There are two possibilities: w /∈Zβ and w ∈Zβ .

CASE 2A. w /∈ E ∗ and w /∈Zβ .

Since w = (p ,q ) /∈ E ∗, w is not an ε/2-equilibrium, and hence is not a (2τ1, 2τ2)-
equilibrium. By Lemma 1 the probability is at least 1

2 that there will be a revision next
period by at least one of the players. If player 1 revises, a transition of form (p ,q ) →
(p ∗, ·) ∈ Z ∗ occurs with probability at least γ. After that, (p ∗, ·) stays in Z ∗ for one more
period with probability at least 1− a e−b s , which is at least 1

2 because a e−b s < β < 1
2 .

Hence in this case
P2(w →Z ∗)≥ γ/4.

If player 1 does not revise but player 2 does, then with probability at least γ we have
a transition of form (p ,q ) → (p ,q ′), where q ′ ∈ P2 is a strategy for player 2 that makes
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player 1 revise with probability greater than β . (There is such a q ′ because of our as-
sumption that w /∈Zβ .) In the following period the transition (p ,q ′)→ (p ∗, ·) occurs with
probability greater than βγ. Hence in this case

P2(w →Z ∗)≥βγ2/2.

Therefore, in either case,

P2(w →Z ∗)≥ (βγ2/2∧γ/4)≥βγ2/4.

Now apply Lemma 2 with Z 0 =Z ∗, θ = a e−b s , and ρ =βγ2/4. Since w /∈Z ∗ we conclude
that

πw ≤ 2a e−b s /(βγ2/4) = 8a e−b s /βγ2. (19)

CASE 2B. w /∈ E ∗ and w ∈Zβ .

By definition of Zβ , player 1 revises with probability at most β , which by assumption
is less than 1

2 . Since w = (p ,q ) /∈ E ∗, some player i can increase his payoff by at least
ε/2, and hence by more than 2τi . This player will revise with probability greater than
1
2 (see Remark 4), hence i cannot be player 1 (who revises with probability less than 1

2 ).
Therefore i must be player 2. By (9), there exists q ′′ on player 2’s grid that is within τ2/8
of a best response to p . The probability is at least γ that 2 chooses q ′′ when he revises.
Putting all of this together, we conclude that

P((p ,q )→ (p ,q ′′))≥ γ/4. (20)

By construction, state (p ,q ′′) is a (·,τ2/8)-equilibrium, hence player 2 revises with prob-
ability at most a e−b s (see the remark after Lemma 1). By assumption, (p ,q ) ∈ Zβ , so
player 1 revises with probability at most β against any strategy of player 2, including q ′′.
Hence (p ,q ′′) is also in Zβ , and

P((p ,q ′′)→ (p ,q ′′))≥ (1−β )(1−a e−b s )≥ (1−β )2 > 1−2β .

From this and (20) we have

P2((p ,q )→ (p ,q ′′))≥ (γ/4)(1−β )2 >γ/16,

the latter since β < 1
2 . Now apply Lemma 2 with Z 0 = {(p ,q ′′)}, ρ = γ/16, and θ = 2β . It

follows that for every stationary distribution π of P ,

πw ≤ 2(2β )/(γ/16) = 64β/γ. (21)

Combining (19) and (21), it follows that in both Case 2a and Case 2b,

∀w /∈ E ∗, πw ≤ 64β/γ∨8a e−b s /βγ2. (22)
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The size of the state space is at least 1/γ2. Summing (22) over all w /∈ E ∗ it follows that

π(Z −E ∗)≤ (1/γ2)(64β/γ∨8a e−b s /βγ2).

We wish to show that this is at most ε/2. This will follow if we choose β and s so that
64β/γ3 = ε/4 and 8a e−b s /βγ4 ≤ ε/4. Specifically, it suffices that

β = εγ3/256

and
s ≥ (1/b ) ln(8192a/ε2γ7).

By Lemma 1 we may choose a = 12m and b =λτ2/256m , hence it suffices that

s ≥ (256m/λτ2) ln(98, 304m/ε2γ7).

This certainly holds under (11), which states that s ≥ (103m 2/λτ2) ln(105m/ε2γ7). This
concludes the proof of the theorem. �

6. CONVERGENCE IN PROBABILITY

Theorem 1 says that, for a given game G , regret testing induces an ε-equilibrium with
high probability provided that the learning parameters satisfy the bounds given in (6)-
(11). But it does not imply that, for a given set of parameters, an ε-equilibrium occurs
with high probability for all games G . The difficulty is condition (7), which in effect re-

quires that d (G ) not fall into the interval (0,
p

48(τ1 ∨τ2)). If we think of G as a vector of
2m1m2 payoffs in Euclidean space, the excluded set is small relative to Lebesgue mea-
sure whenever the τi are small. Thus, if we tighten τ1, τ2 and the other parameters in
tandem, the learning process eventually captures all games in the “net,” that is, there
are no excluded cases. In this section we show even more, namely, that by tightening
the parameters sufficiently slowly, the players’ period-by-period behavioral strategies
converge in probability to the set of Nash equilibria of G .

Fix an m1×m2 action space X =X1×X2 and consider all games G on X with payoffs
normalized to lie between zero and one. As before, let m1 ∨m2, λ= λ1 ∧λ2, γ= γ1 ∧γ2,
and τ = τ1 ∧τ2. For each ε > 0, we choose particular values of these parameters that
satisfy all the bounds except (7), namely,

τi (ε) = ε2/48 (23)

λi (ε) =τ(ε)/16 (24)

h i (ε) =
 

8
p

m/τ(ε)
£

(25)

γi (ε) = 1/ |Pi (h i (ε))| (26)

s (ε) =
 

(103m 2/λ(ε)τ2(ε) ln(105m/ε2γ7(ε)
£

. (27)

Recall that |Pi (h i (ε))| is the number of distributions on i ’s grid when his hat size is
h i (ε). Hence the players’ grids become increasingly fine as ε becomes small. Note also
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that (26) implies that each player chooses a new hat with uniform probability when-
ever a revision is called for. This proves to be analytically convenient in what follows,
although more general assumptions could be made.

Let PG (ε) denote the finite-state Markov process determined by G and the parame-
ters (τ1(ε), . . . , s (ε)). Let EG (ε) be the finite subset of states that induce an ε-equilibrium
of G .

DEFINITION 1. Let P be an acyclic, finite Markov process andA a subset of states. For
each ε > 0, let T (P,A ,ε) be the first time (if any) such that, for all t ≥ T (P,A ,ε) and all
initial states, the probability is at least 1− ε that the process is inA at time t .

It follows from Theorem 1 that T (PG (ε),EG (ε),ε) is finite for all games G such that

d (G ) /∈ (0,
p

48(τ1 ∨τ2)). By assumption (23), this holds whenever d (G ) /∈ (0,ε). In this
case, for all t ≥ T (PG (ε),EG (ε),ε), the probability is at least 1 − ε that the behavioral
strategies constitute an ε-equilibrium of G at time t .

The time T (PG (ε),EG (ε),ε)may depend on the payoffs, because these affect the de-
tails of the transition probabilities and the states that correspond to ε-equilibria of
G . We claim, however, that for every ε > 0 there is a time T (ε) such that T (ε) ≥
T (PG (ε),EG (ε),ε) for all G such that d (G ) /∈ (0,ε).

To see why this is so, consider the realization of plays on any given day. A realization
is a sequence of s (ε) action-outcome pairs, where an “outcome” is 0 or 1 depending on
whether the action was taken by that player while on the phone or not. Hence there
are (4m1m2)s (ε) possible realizations. We may partition them into four disjoint classes:
sequences that cause both the players to reject (because the estimated regrets exceed
their tolerances), sequences that are rejected by player 1 but not player 2; sequences that
are rejected by player 2 but not player 1, and sequences that are accepted by both. Notice
that this partition does not depend on the day t or on the strategies (p t ,qt ) in force
during that day, but it does depend on the game G . Moreover, a player’s response given
a rejection does not depend on other details of the sequence, because we are assuming
that each player chooses a new strategy with uniform probability over all distributions
on his grid.

The number of length-s (ε) realizations is finite, and there are finitely many ways of
partitioning them into four classes. Further, the probability that each sequence is re-
alized on a given day t is determined by the state (p t ,qt ), and there are finitely many
states. Hence, over all G , there can be only a finite number of Markov transition ma-
trices PG (ε). Further, finitely many subsets of states can be used to define EG (ε). Let
us enumerate all possible pairs (PG (ε),EG (ε)) as follows: (P1,E1), . . . , (Pk ,Ek ). Now de-
fine T (ε) = max1≤j≤k T (Pj ,Ej ,ε). Then T (ε) has the property that, for all G such that
d (G ) 6∈ (0,ε), and for all t ≥ T (ε), the behavioral strategies constitute an ε-equilibrium
at time t with probability at least 1− ε.

DEFINITION 2 (annealed regret testing). Consider any positive sequence ε1 > ε2 > ε3 >

· · · decreasing to zero. The annealed regret testing procedure at stage k is the regret
testing procedure with parameters τ1(εk ), τ2(εk ), λ1(εk ), λ2(εk ), h1(εk ), h2(εk ), γ1(εk ),



Theoretical Economics 1 (2006) Regret testing 359

γ2(εk ), and s (εk ) as in (23)–(27). Each day that the process is in stage k , the probability
of moving to stage k +1 on the following day is

pk ≡
ε2

k+1

2k 2T (εk+1)
.

THEOREM 2. Fix an m1 ×m2 action space X = X1 ×X2. Annealed regret testing has the
property that, for every game G on X , the behavioral strategies converge in probability to
the set of Nash equilibria of G .

Although annealed regret testing seems to require that each player has an arbitrarily
long memory, the process is actually of much lower dimension. To see why, let us fix a
particular player i . Create one “payoff register” and one “counting register” for each of
i ’s actions, plus one general payoff register and one general counting register for all of his
actions together. Let k be a state variable that is common to all the players and indicates
what stage the process is in (i.e., what parameters are currently in force). At each time
t , i ’s general payoff register contains the running total of the payoffs he received when
not on the phone, and the general counting register contains the number of times he
was not on the phone. Similarly, each action-specific register contains the running total
of the payoffs he received when he was on the phone and played that action, and the
number of times the action was played while on the phone. When the sum over all
counting registers reaches s (εk ), player i conducts a test using the k th set of parameters,
revises his strategy if this is called for, and empties all the registers. The process is then
repeated. Thus player i needs to keep track of only 2m i+3 numbers—two for each of his
actions, two in the general registers, and the current stage k . Thus the learning process
requires very little memory or computational sophistication.

PROOF OF THEOREM 2. Given G , it suffices to show that, for every ε > 0, there is a finite
time Tε (possibly depending on G ) such that for all t ≥ Tε , the probability is at least
1− ε that the behavioral strategies (ep t , eqt ) constitute an ε-equilibrium of G . Indeed, for
every δ > 0 there exists 0 < εδ ≤ δ such that every εδ-equilibrium lies within δ of the
compact setNG of Nash equilibria of G . Hence, for all t ≥ Tεδ , the probability is at least
1− εδ ≥ 1−δ that (ep t , eqt ) lies within δ ofNG . Thus, the behavioral strategies converge
in probability to the set of Nash equilibria of G .

To facilitate the proof we define three integer-valued random variables Nt , Tk , and
Wk that describe the process as it transitions through stages. Let Nt be the stage that
the process is in on day t . In other words, on day t the process is using the parameters
(τ1(εNt ), τ2(εNt ), λ1(εNt ), λ2(εNt ), h1(εNt ), h2(εNt ), γ1(εNt ),γ2(εNt ), s (εNt )). The distribu-
tion of the realizations of Nt depends on the transition probabilities as follows:

N1 = 1

Nt+1 =

(

Nt with probability 1−pNt

Nt +1 with probability pNt .
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The first time that the system uses the k th set of parameters is denoted by Tk , that is, Tk ≡
inft {t : Nt ≥ k }. Now define Wt ≡ t −TNt to be the length of time since the parameters
were last changed. In essence, the proof consists of establishing two facts about Wt .
First we show that if Wt is “large” for a given t , the behavioral strategies are nearly a
Nash equilibrium with high probability at time t . This follows by applying Theorem 1 to
this setting. Second, we show that the probability that Wt is “large” converges to one as t
converges to infinity. This follows from our assumption that the transition probabilities
pk are small. We now establish these points in detail.

For any game G on X , if d (G )> 0 then d (G )≥ εk for all sufficiently large k , because
the sequence {εk } decreases to zero. The least such k is called the critical index of G , and
denoted by kG . In case d (G ) = 0, we take kG = 1. Fix ε > 0. Define k ∗G = kG ∨mink {k |
εk ≤ ε/4}. It follows that if Nt ≥ k ∗G then εNt ≤ ε/4 and d (G )≥ εNt .

Since Nt →∞ almost surely as t →∞, there is a time T ∗ such that, for all t ≥ T ∗, the
probability is at least 1− ε/4 that Nt ≥ k ∗G . From now on we consider only t ≥ T ∗.

Given t ≥ T ∗, consider two cases: Wt ≥ T (εNt ) and Wt < T (εNt ). In the first case, the
process is an εNt -equilibrium with probability at least 1− εNt . Since t ≥ T ∗, Nt ≥ k ∗G
with probability at least 1− ε/4, in which case εNt ≤ ε/4. It follows that at time t the
process is in an ε/4-equilibrium, and hence an ε-equilibrium, with probability at least
(1− ε/4)(1− ε/4)≥ 1− ε/2.

To complete the proof, it therefore suffices to show that, for all sufficiently large t ,
the second case occurs with probability at most ε/2, that is, there exists T ∗∗ such that

∀ t ≥ T ∗∗, P(Wt < T (εNt ))≤ ε/2. (28)

To establish (28) we proceed as follows. Recall that in the k t h stage of the pro-
cess, the parameter values are (τ1(εk ), . . . , s (εk )). By choice of pk , the k t h stage lasts
for 2k 2T (εk+1)/ε2

k+1 periods in expectation. Say that the k t h stage is short if it lasts for
at most T (εk+1)/ε2

k+1 periods, which is 1/2k 2 times the expected number. This event
has probability at most 1/k 2. Hence, given any positive integer k0, the probability that a
short stage occurs at some time after the k t h

0 stage is at most

∑

k>k0

1/k 2 ≤
∫ ∞

k0

d x/x 2 = 1/k0.

If we let k ∗∗G = k ∗G ∨ 16/ε, it follows that the probability is at most ε/16 that a short stage
ever occurs after stage k ∗∗G .

Now there exists a time T ∗∗ such that

∀ t ≥ T ∗∗, P(Nt ≥ k ∗∗G +2)≥ 1− ε/16.

We show that (28) holds for this value of T ∗∗.
For each time t ≥ T ∗∗, define the event A t to be the set of all realizations such that

there is at most one stage change between t −T (εNt )/ε
2
Nt

and t , that is,

Nt ≤ 1+Nt−T (εNt )/ε
2
Nt

.
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Let Ac
t denote the complement of A t . Since t ≥ T ∗∗, the probability is at least 1− ε/16

that the process is at stage k ∗∗G +2 or higher at time t . Denote this event by Bt . If Bt and
Ac

t both hold, then there were at least two stage changes between t −T (εNt )/ε
2
Nt

and t ,
hence the previous stage change (before the current stage) was short. But we already
know that the probability of a short stage at any time beyond stage k ∗∗G is at most ε/16.
Hence P(Ac

t | Bt )≤ ε/16 and P(B c
t )≤ ε/16. Therefore

∀ t ≥ T ∗∗, P(Ac
t )≤ P(Ac

t | Bt )+P(B c
t )≤ 2(ε/16) = ε/8.

We now compute the probability that Wt < T (εNt ). By the preceding we know that

P(Wt < T (εNt ))≤ P(Wt < T (εNt ) | A t )+P(Ac
t )

≤ P(Wt < T (εNt ) | A t )+ ε/8.

Hence to establish (28) it suffices to show that

P(Wt < T (εNt ) | A t )≤ 3ε/8.

Clearly,

P(Wt < T (εNt ) | A t ) =
∑

k

P(Wt < T (εNt ) |Nt = k , A t )P(Nt = k | A t )

≤max
k

P(Wt < T (εNt ) |Nt = k , A t ).

Let Nt = k . The event A t is the disjoint union of the event A0
t in which no stage

change occurs between t −T (εk )/ε2
k and t , and the event A1

t in which exactly one stage
change occurs.

When A0
t occurs, Wt ≥ T (εk )/ε2

k > T (εk ), hence P(Wt < T (εk ) | A0
t ) = 0. It remains

only to show that P(Wt < T (εk ) | A1
t )≤ 3ε/8.

The conditional distribution of Wt is

f (w )≡ P(Wt =w |Nt = k , A1
t ) = ck (1−pk )T (εk )/ε2

k−w pk (1−pk+1)w−1, (29)

where ck is a positive constant and 1 ≤ w ≤ T (εk )/ε2
k . This follows because under A1

t
a single stage change occurs during the interval, and it occurs exactly Wt = w periods
before period t . We may rewrite (29) in the form

f (w ) = c ′k

�

1−pk+1

1−pk

�w

for some c ′k > 0. Since pk > pk+1, f (w ) ≤ f (w + 1). Hence for every T and w in the
interval 1≤ T , w ≤ T (εk )/ε2

k ,

∑

w<T

f (w )≤ T f (T ) and
∑

w≥T

f (w )≥ (T (εk )/ε2
k −T ) f (T ).
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In particular for T = T (εk )we have

P(Wt < T (εk )) =
∑

w<T (εk )

f (w )

=
1

1+
∑

w≥T (εk )
f (w )
�
∑

w<T (εk )
f (w )
≤

1

1+
�

T (εk )/ε2
k −T (εk )
�

/T (εk )
= ε2

k .

Since t ≥ T ∗∗, εNt = εk ≤ ε/4 with probability at least 1− ε/4. Hence

P(Wt < T (εk ))≤ (ε/4)2(1− ε/4)+ ε/4< 3ε/8.

This establishes (28) and completes the proof of Theorem 2. �

APPENDIX

Here we prove Lemma 1, which is restated for easy reference.

LEMMA 1. Let m =m1∨m2, τ=τ1∧τ2, and λ=λ1∧λ2, and suppose that 0<λi ≤τ/8≤
1
8 for i = 1, 2. There exist positive constants a , b , and c such that, for all t ,

(i) If state z t = (p t ,qt ) is a (τ1/2,τ2/2)-equilibrium, a revision occurs at the end of
period t with probability at most a e−b s for all s .

(ii) If z t is not a (2τ1, 2τ2)-equilibrium and if s ≥ c , then at least one player revises at
the end of period t with probability greater than 1

2 ; moreover if each player i is out
of equilibrium by at least 2τi , both revise at the end of period t with probability
greater than 1

4 .

It suffices that a = 12m , b =λτ2/256m , and c = 103m 2/λτ2.

PROOF. The player’s strategy revisions are triggered by the size of their realized regrets
br i

t . Hence we need to estimate the distribution of br i
t conditional on the state at time t ,

namely, z t = (p t ,qt ). Recalling the definitions of bαi
j ,t and bαi

t from Step 3 of regret testing,
let

αi
j ,t ≡ E (bαi

j ,t | (p t ,qt )) and αi
t ≡ E (bαi

t | (p t ,qt )).

Recall that player 2 draws from his hat with probability 1−λ2, and plays an action uni-
formly at random with probability λ2. (The uniform distribution over actions when
experimenting contrasts with the possibly non-uniform distribution over hats when a
rejection occurs.) Hence when player 1 chooses action j at time t , his expected payoff is

α1
j ,t =
∑

k

((1−λ2)(qt )k +λ2/m2)u 1
j ,k .

Similarly, 1’s expected payoff at time t is

α1
t =
∑

j ,k

(p t )j ((1−λ2)(qt )k +λ2/m2)u 1
j ,k .
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Similar expressions hold for α2
j ,t and α2

t . Define

r i
t ≡max

j
αi

j ,t −α
i
t .

Since E (bαi
j ,t | (p t ,qt )) =αi

j ,t and E (bαi
t | (p t ,qt )) =αi

t we can think of the difference,

br i
t =max

j
bαi

j ,t − bα
i
t ,

as being an estimator of r i
t .

Define the estimation error in state (p t ,qt ) to be

|br i
t − r i

t |.

Next we estimate the distribution of the realized regret estimates br i
t .

CLAIM. If λi ≤ 1
3 , then for all δ≤ 1/

p

2m i , and for all times t,

P
�

|br i
t − r i

t |>δ
�

≤ 6m i e−sλiδ2/16m i . (A1)

PROOF. Fix a player i and let (p t ,qt ) be the state on day t . Let N i
j ,t be the number of

times action j is played on day t while player i is on the telephone. The average payoff
during these times, bαi

j ,t , is an average of N i
j ,t items, each of which is bounded between

zero and one. By Azuma’s inequality (Azuma 1967),

P(|bαi
j ,t −α

i
j ,t |>δ | (p t ,qt ), N i

j ,t )≤ 2e−N i
j ,t δ

2/2. (A2)

Let N i
t =
∑

j N i
j ,t . The number of times i was not on the phone on day t is s −N i

t ,
hence again by Azuma’s inequality

P(|bαi
t −α

i
t |>δ | (p t ,qt ), N i

t )≤ 2e−(s−N i
t )δ2/2. (A3)

Since for any two eventsA andB , P(A ∪B )≤ P(A )+P(B ), it follows from (A2) and
(A3) that

P(|br i
t − r i

t |> 2δ | (p t ,qt ), N i
1,t , N i

2,t , . . . , N i
m i ,t )≤ 2

m i
∑

j=1

e−N i
j ,t δ

2/2+2e−(s−N i
t )δ2/2. (A4)

The next step is to estimate the size of the tail of the random variable N i
j ,t , which is

binomially distributed B (λi /m i , s ). We claim that

P

��

�

�

�

N i
j ,t −

sλi

m i

�

�

�

�

≥
sλi

2m i

�

≤ 2e−sλi /20m i . (A5)

This can be derived from Bennett’s inequality (Bennett 1962). Consider a collec-
tion of n independent random variables U1, . . . ,Un with sup |Ui | ≤ M , E Ui = 0, and
∑

i E U 2
i = 1. Then for every τ> 0,

P

�

∑

i

Ui ≥τ
�

≤ exp

�

τ

M
−
�

τ

M
+

1

M 2

�

ln(1+Mτ)
�

. (A6)
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We apply this to the case of n i.i.d. random variables X1, . . . , Xn , with Var(X i ) = σ2 and
|X i | ≤ 1. Let Ui = (1/σ

p
n )(X i − E X ). Then |Ui | < 1/σ

p
n , EUi = 0, and

∑n
i=1 EU 2

i = 1.
Letting τ= (γ/σ)

p
n , M = 1/σ

p
n , and X =
∑

X i /n , it follows from (A6) that

P(X −E X ≥ γ)≤ exp
�

nγ−n (γ+σ2) ln(1+γ/σ2)
�

.

If we take γ=σ2/2 and use the fact that ln(3/2)≥ .4,

P(X −E X ≥σ2/2)≤ exp(−nσ2/10).

When the X i ’s are binomial (p , n )with 0< p < .5, this implies

P(X −p ≥ p/2)≤ e−np/20

and hence
P(|X −p | ≥ p/2)≤ 2e−np/20,

from which (A5) follows immediately.
Consider the eventB in which all of the N i

j ,t lie within their expected value λi s/m i

plus or minus half their expected value:

B ≡
⋂

j
{|N i

j ,t −λi s/m i | ≤λi s/2m i }.

From (A5) it follows that the probability of the complementary eventB c satisfies

P(B c )≤ 2m i e−sλi /20m i . (A7)

LetA be the event |br i
t − r i

t )|> 2δ. From (A4) we have

P(A |B )≤ 2m i e−λi sδ2/4+2e−(s−N i
t )δ2/2.

But if B holds, then s −N i
t ≥ s − 3λi s/2 = (1− 3λi /2)s . By hypothesis λi ≤ 1

3 , hence
s −N i

t > s/2 and

P(A |B )≤ 2m i e−λi sδ2/4+2e−sδ2/4. (A8)

Since P(A )≤ P(A |B )+P(B c ), it follows from (A7) and (A8) that

P(A ) = P(|br i
t − r i

t |)> 2δ)≤ 2m i e−sλiδ2/4+2e−sδ2/4+2m i e−sλi /20m i

≤ 2(m i +1)e−sλiδ2/4+2m i e−sλi /20m i .

Changing from δ to δ/2 we obtain

P(|br i
t − r i

t |>δ)≤ 2(m i +1)e−sλiδ2/16+2m i e−sλi /20m i . (A9)

By assumption,δ≤ 1
p

2m i ; so 1/20m i ≥δ2/16≥δ2/16m i . It follows that e−sλiδ2/16m i ≥
e−sλiδ2/16 ≥ e−sλi /20m i , hence (A9) implies

P(|br i
t − r i

t |>δ)≤ (4m i +2)e−sλiδ2/16m i ≤ 6m i e−sλiδ2/16m i .

This establishes (A1) as claimed. �
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Recall that in state (p ,q ) the behavioral probabilities are, for player 1,

ep = (1−λ1)p +(λ1/m1)~1m1 ,

and for player 2,
eq = (1−λ2)q +(λ2/m2)~1m2 . (A10)

If (p t ,qt ) is an (ε1,ε2)-equilibrium, the expected regrets r i
t in state (p t ,qt ) satisfy the

bound
r i

t ≤ εi +2(λ1 ∨λ2). (A11)

(This follows from (A10) and the assumption that the payoffs are bounded between 0
and 1.)

To prove Lemma 1, part (i), assume that z t = (p t ,qt ) is a (τ1/2,τ2/2)-equilibrium.
Since by assumption, λ1, λ2 ≤τ/8, where τ=τ1 ∧τ2, it follows from (A11) that

r i
t ≤τi /2+τi /4= 3τi /4.

In order for a rejection to occur, we must have br i
t > τi , which by the preceding implies

that |br i
t − r i

t | > τi /4. Letting δ = τi /4, it follows from (A1) that the probability of this

occurring is less than 6m i e−sλiτ
2
i /256m i . Thus the probability that one or both players

reject is less than
2
∑

i=1

6m i e−sλiτ
2
i /256m i ≤ 12m e−sλτ2/256m .

This establishes Lemma 1, part (i).
To prove part (ii) of the lemma, suppose that in state z t at least one of the players,

say i , can improve his payoff by more than 2τi . This implies r i
t > 2τi −τi /4≥ 7τi /4. He

rejects unless br i
t ≤ τi , which implies |br i

t − r i
t | > 3τi /4. By (A1) we know that the prob-

ability of this is less than 6m i e−9sλiτ
2
i /256m i ≤ 6m i e−sλiτ

2
i /30m i . Choose s large enough

that
6m i e−sλiτ

2
i /30m i < 1

3 .

This holds if

s >
30m i

λiτ
2
i

ln(18m i ).

Noting that lnx ≤ x for x ≥ 1, this simplifies to

s >
540m 2

i

λiτ
2
i

.

Recalling that m =m1 ∨m2, τ = τ1 ∧τ2, and λ = λ1 ∧λ2, we see that this holds if s ≥
c = 103m 2/λτ2, as posited in the lemma. We have therefore shown that, if player i is
out of equilibrium by more than 2τi , then i accepts with probability at most 1

3 , and

rejects with probability at least 2
3 , which is certainly greater than 1

2 . If both players are in
this situation (as posited in part (ii) of the lemma), then each revises with probability at
least 2

3 . Since the union of these two events has probability at most 1, their intersection

has probability at least 1
3 which is certainly greater than 1

4 . This concludes the proof of
Lemma 1, part (ii). �
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