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Hierarchies of belief and interim rationalizability
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In games with incomplete information, conventional hierarchies of belief are in-
complete as descriptions of the players’ information for the purposes of deter-
mining a player’s behavior. We show by example that this is true for a variety of
solution concepts. We then investigate what is essential about a player’s infor-
mation to identify behavior. We specialize to two player games and the solution
concept of interim rationalizability. We construct the universal type space for ra-
tionalizability and characterize the types in terms of their beliefs. Infinite hierar-
chies of beliefs over conditional beliefs, which we call∆-hierarchies, are what turn
out to matter. We show that any two types in any two type spaces have the same
rationalizable sets in all games if and only if they have the same∆-hierarchies.
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1. INTRODUCTION

Games with incomplete information are indispensable tools in modern economic anal-
ysis. John Harsanyi, in a series of papers (Harsanyi 1967–68), introduced the Bayesian
game framework which is now the nearly universally adopted model of strategic be-
havior under incomplete information. Harsanyi himself observed that prior to his in-
novation, the basic theory of incomplete information was almost non-existent despite
the obvious wealth of potential applications. The problem seemed to arise at the most
fundamental level: how to formalize a player’s beliefs and higher-order beliefs in a man-
ageable way.

“It seems to me that the basic reason why the theory of games with incom-
plete information has made so little progress so far lies in the fact that these
games give rise, or at least appear to give rise, to an infinite regress in recip-
rocal expectation on the part of the players . . . . In such a game player 1’s
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Copyright c© 2006 Jeffrey C. Ely and Marcin Pęski. Licensed under the Creative Commons Attribution-
NonCommercial License 2.5. Available at http://econtheory.org.

http://creativecommons.org/licenses/by-nc/2.5
http://creativecommons.org/licenses/by-nc/2.5
http://econtheory.org
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strategy choice will depend on what he expects (or believes) to be player 2’s
payoff function U2, as the latter will be an important determinant of player
2’s behavior in the game. . . . But his strategy choice will also depend on what
he expects to be player 2’s first-order expectation about his own payoff func-
tion U1. Indeed player 1’s strategy choice will also depend on what he ex-
pects to be player 2’s second-order expectation—that is, on what player 1
thinks that player 2 thinks that player 1 thinks about player 2’s payoff func-
tion U2. . . . and so on ad infinitum.”

To completely describe an incomplete information environment, one must specify
the players’ infinite hierarchies of belief, and this appeared intractable. Harsanyi’s solu-
tion was based on the compact model of information that is now called a type space.
Suppose the players are uncertain about which events in some set Ω of states of the
world hold. Typically Ω will represent the possible payoff functions in the game. In a
type space over Ω, all strategically relevant aspects of a player’s information about Ω are
encapsulated in a single variable, referred to as the player’s type. Each player has a set of
possible types Ti , and for each type t i there is specified a belief µi (t i ) about the underly-
ing payoffs and the types of the other players in the game. This structure is quite simple
formally, and yet within this simple model are embedded the complex hierarchies of
belief that seemed to produce infinite regress. Here is a simple example to illustrate.

1.1 Example

In this example, there are two players and two possible payoff-relevant states of the
world, Ω= {−1,+1}. Each player i has two possible types, Ti = {−1,+1}, and the state of
the world together with the players’ types are drawn from a common prior1 distribution
µ∈∆(T1×T2×Ω) given by

µ (t i , t−i ,ω) =

(

1
4 ifω= t i · t−i

0 otherwise.

The belief µi (t i ) ∈∆(Ω×T−i ) is then derived by updating µ in a Bayesian fashion, con-
ditional on the realized type t i .

In this type space, each player assigns equal probability to each payoff-relevant
event. These are the first-order beliefs. Since player i holds this first-order belief re-
gardless of whether i is type is −1 or +1, and since player −i assigns probability 1 to
player i having one of these two types, it follows that each player is certain of the oth-
ers’ first-order beliefs. These are the second-order beliefs. The same reasoning implies
that each player is certain of the other’s second-order beliefs and so on. Indeed, in this
simple type space it is always common knowledge that the two states are equally likely.
We can see that Harsanyi’s Bayesian game model is a parsimonious way to formalize
the complex hierarchies of beliefs that previously seemed to be intractable. It has also

1The common prior model was introduced by Harsanyi as a special case of his model. To sharpen our
point this example has a common prior (as this is typical in economic applications) but in our analysis we
consider type spaces of the most general form.
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proved straightforward to apply using versions of traditional complete-information so-
lution concepts.

1.2 Foundations of the Harsanyi framework

In the Harsanyi framework, type spaces are a convenient modeling device used to de-
scribe the players’ beliefs and higher-order beliefs. One potential concern with the use
of a type space is the following. If hierarchies of belief are what really matter, then we
must be assured that any hierarchies we might wish to model can be captured in some
type space. This concern has been resolved by Mertens and Zamir (1985) and Bran-
denburger and Dekel (1993) who showed that when the set of states of the world Ω has
some minimal structure, then any internally consistent (“coherent”) hierarchy can be
modeled using a type space. In fact, there exists a single universal type space U (Ω) that
simultaneously captures them all: for every coherent hierarchy there is a type in U (Ω)
with that hierarchy.2 Thus, the Harsanyi framework is sufficiently general to model any
incomplete information scenario.

Another potential concern has not received the same attention. The type space we
used in our example is but one of many that would capture those specific hierarchies
of belief. Indeed, any specification of the players’ hierarchies can be equally well gener-
ated by many different type spaces. If hierarchies are what matter, and if type spaces are
simply a convenient device used to model them, then we should be assured that the out-
comes we predict for a given hierarchy should not depend on the particular type space
used to model it. However, the type space can matter for outcomes, as can be seen in
the following game.

Consider the following two player game of incomplete information. There are two
states of the world Ω = {−1,+1}. Each player i has three actions A i = {a i ,b i , c i } and a
payoff u i that depends on the actions chosen by each player and the state of the world.
The payoffs are summarized in Figure 1.

a 2 b2 c2

a 1 1, 1 −10,−10 −10, 0
b1 −10,−10 1, 1 −10, 0
c1 0,−10 0,−10 0, 0

ω=+1

a 2 b2 c2

a 1 −10,−10 1, 1 −10, 0
b1 1, 1 −10,−10 −10, 0
c1 0,−10 0,−10 0, 0

ω=−1

FIGURE 1. A game with incomplete information.

Focusing only on the subsets {a i ,b i }, we have a common interest game in which the
players wish to choose the same action in the positive state and the opposite action in
the negative state. Failing to coordinate is costly, and the action c i is a “safe” alternative
when, conditional on the state, i is uncertain of his opponent’s action.

2On the other hand, when the set of states lacks the topological structure assumed by these authors,
Heifetz and Samet (1999) showed that the type space framework may not be sufficiently general to model
all coherent hierarchies. See also Meier (2005)
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Within the Harsanyi framework, once we have described the set of states of the
world, the actions in the game, and the payoffs, we complete the description by spec-
ifying the players’ information, i.e. their hierarchies of belief about payoffs, and then
finding a suitable type space to model them. Let us suppose that it is common knowl-
edge among the players that the two states of the world are equally likely. The type space
we have already introduced is one way to capture this assumption. We can now apply
standard solution concepts to the resulting Bayesian game. It is a Bayesian Nash equi-
librium for the players to achieve perfect coordination where types t i =+1 play a i and
types t i =−1 play b i . Symmetrically, there is another equilibrium where t i =+1 play b i

and t i =−1 play a i . Obviously it is also an equilibrium for both to play c i independent
of type. It follows that all actions are interim rationalizable for every type.

In the type space under consideration, each player has the same hierarchy of beliefs
regardless of his type. It appears that there is a spurious duplication of types. So instead
consider the simpler type space in which each player has exactly one type and this type
knows the other player’s type and assigns equal probability to the two states of the world.
Formally, T ∗i = {∗} and there is a common priorµ∗ given byµ∗(∗,∗,+1) =µ∗(∗,∗,−1). This
type space generates exactly the same hierarchies of belief as in our first example: com-
mon knowledge that the states are equally likely. However, when the game in our ex-
ample is played over this type space, the unique Bayesian Nash equilibrium, the unique
correlated equilibrium, indeed the unique rationalizable outcome, is for both players to
play c i .3

We cannot be assured that our predictions are invariant to the choice of the type
space. Indeed, specifying the hierarchies was not enough to complete the description
of the environment as it is not only hierarchies that matter for (correlated) equilibrium
and rationalizability. While the additional types in the original type space are duplicates
in terms of their hierarchies, they are not redundant because they generate a payoff-
relevant means of correlating behavior with the state of the world.

This observation has a significance for the philosophical debate (see Aumann 1987,
Brandenburger and Dekel 1993, Gul 1998, and Aumann 1998) about whether or not the
information structure in a game is common knowledge. The universal type space has
been interpreted as precisely that information structure that can be assumed without
loss of generality to be common knowledge. For example, Brandenburger and Dekel
(1993) suggest that the universal type space realizes Aumann’s hypothesis of a com-
pletely specified “state space”. This is certainly true if, as in Brandenburger and Dekel
(1993), one considers the information structure purely as a model of beliefs (about be-
liefs) about uncertain events. But if what is important is the range of possible behaviors

3It deserves emphasis that the issue we are pointing to here is distinct from the familiar one that adding
redundant types to an information structure creates the possibility that the players can correlate their ac-
tion choices and thus increases the set of equilibrium outcomes. That observation is equivalent to the
statement that the set of correlated equilibria of a game is larger than the set of Nash equilibria of a game.
To see that something different is happening in our example, note that the sets of correlated equilibria in
the two games are distinct. Adding redundant types in order to generate correlation in play can never affect
the set of correlated equilibria (see Brandenburger and Dekel 1987). Indeed, it can never affect the set of
rationalizable outcomes as it does here.
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in a game and not just beliefs, then our example shows that there is a loss of generality
in assuming that the universal type space is commonly known. In particular, this as-
sumption would imply that whenever the players commonly know that each state in the
example is equally likely, they must play action c .4

One of the themes of the debate concerns the appropriateness of different ways of
modeling interactive beliefs. Gul (1998) claims that hierarchies of beliefs are more ap-
propriate if one takes Savage’s (1954) “personalistic" view. Aumann (1998) replies that
the hierarchy and type space models are equivalent and could be used interchangeably
depending on the convenience in a particular application.5 Our observations echo the
claims made in the recent literature (see Battigalli and Siniscalchi (2003, Section 6) and
Bergemann and Morris (2005, Section 2.5)) that, in terms of the behavior that can be
modeled, Harsanyi type spaces are more general. Our objective is to understand how
the hierarchies model must be augmented in order to re-establish this equivalence.

1.3 ∆-hierarchies

As argued above, from the point of view of rationalizability, conventional hierarchies of
belief are incomplete as descriptions of a player’s information. The goal of this paper is
to identify a characteristic of a player’s information that is sufficient and necessary for
determining what is rationalizable in any game. Ideally, we would like this characteristic
to be expressible in a language common to the players and the modeler. In particular,
just as with conventional hierarchies of belief it should be described in a way that does
not refer to any particular type space, the symbols of which are not assumed to have any
meaning to the players.6

For the solution concept of rationalizability, we are able to identify a characteris-
tic of information, which we call the ∆-hierarchy, that is both necessary and sufficient
for predicting rationalizable behavior in two player games. ∆-hierarchies are infinite
hierarchies of beliefs about conditional beliefs. Perhaps the easiest way to understand
∆-hierarchies is to see how they can be extracted from a type space.

If player i could learn his opponent’s information, i would obtain some conditional

4In Section 7 we present an example that makes an even stronger point in this regard. There we describe
a game with an action that is not rationalizable for any type when it is assumed that the universal type space
is common knowledge. Nevertheless, this action could be played as a part of Bayesian Nash equilibrium in a
very simple, completely standard type space where there is common knowledge of rationality and common
knowledge that the players’ beliefs are coherent.

5Aumann (1998) refers to partition model, which for our purposes is equivalent to Harsanyi’s type space.
6It is tempting to suggest that the solution is to describe types by their hierarchies of belief over all events

in Ω× T , not just those that are payoff-relevant. Indeed, the type ∗ and the types {−1,+1} can be distin-
guished by their beliefs over states and types of the opponent. However, this approach fails for two reasons.
First, the payoff-irrelevant events are type-space specific, so it would be impossible to describe these beliefs
in a type-space independent way. Second, distinguishing types by their beliefs over all events only pushes
the problem to the other extreme: types that are truly equivalent would not be treated so. For example,
the two types−1 and+1 have the same rationalizable behavior in every game (this is a consequence of our
main result) and yet they have distinct first-order beliefs over the types of the opponent and Ω. Even worse,
any type space can be duplicated by re-labeling the types or expanded by adding additional irrelevant types
generating a new set of strategically equivalent types whose hierarchies overΩ×T are nevertheless distinct.
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belief about the state of the world. So, before knowing the opponent’s information, i
has a prior belief over the many different conditional beliefs he could obtain, were he to
learn it. The first-order belief is this probability distribution over possible conditional
beliefs. Within a type space, the first-order belief is derived for a type t i as follows.
First, determine for each type t−i of the opponent what would be the conditional be-
lief β (t i , t−i ) ∈∆Ω of t i if the opponent’s type were known. Then, the probability of any
set Y ⊂∆Ω of possible conditional beliefs is the probability t i assigns to the set of types
t−i for whichβ (t i , t−i ) belongs to Y . Once we have derived first-order beliefs of this form
for every type, we can in the usual way derive the second-order beliefs: the probability
any type t i assigns to the events consisting of first-order beliefs of the opponent and the
conditional beliefs of t i . Higher-order beliefs are defined analogously.

Let us see how the types in our type spaces are distinguished by their∆-hierarchies.
In the first type space, conditional on learning the opponent’s type, each type would
learn the state with certainty. Because the two types of the opponent have equal prob-
ability, the first-order belief of each type is an equal mixture over Dirac measures. With
probability 1

2 the conditional belief assigns probability 1 to stateω=+1 and with prob-

ability 1
2 the conditional belief assigns probability 1 to state ω = −1. Since all types

have this first-order belief, the second-order and higher-order beliefs are again degen-
erate: there is common-knowledge of these first-order beliefs. In the second type space,
each type’s first-order belief is instead a Dirac measure on an equal mixture. Here, each
type already knows the opponent’s type, so there is nothing new to learn. If i were to
learn the opponent’s type, then with probability 1 the conditional belief would assign
equal probability to the two states. Hence, the∆-hierarchy of type ∗ is equal to common
knowledge of a Dirac measure on an equal mixture over both states. On the other hand,
not all types have distinct ∆-hierarchies. For example the derivation above shows that
the∆-hierarchies of types +1 and −1 are the same.

1.4 Overview of results

To recap, a ∆-hierarchy consists of a probability distribution over conditional beliefs
(the first-order belief) in ∆Ω, a joint probability distribution over the opponent’s first-
order belief and own conditional beliefs (the second-order belief), etc. Just as with con-
ventional hierarchies of belief, while they are implicitly captured within a type space,
their explicit description uses only the natural language of probabilities and conditional
probabilities. In particular the description does not refer to any particular type space.
Furthermore, by an extension of the results of Mertens and Zamir (1985) and Branden-
burger and Dekel (1987) (our Theorem 1), all∆-hierarchies can be collected into a single,
“universal" type space U (∆Ω) over∆Ω.

The main result of this paper, Theorem 2, shows that U (∆Ω) is, in a sense, the uni-
versal type space for rationalizability. Precisely, we divide the statement into three parts:

1. Sufficiency: Two types with the same ∆-hierarchy have the same rationalizable
behavior in every game.

2. Necessity: For any two types with different∆-hierarchies there is a game in which
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both types have different rationalizable sets.

3. Non-Redundancy: For each∆-hierarchy there exists a type space that can be used
to represent it.

To show non-redundancy, we construct a single type space over Ω, called L (Ω) (Sec-
tion 4.1) where the set of types of player i is equal to L i (Ω) =Ui (∆Ω)×∆Ω. Here each
type in L i (Ω) has a label (u∆i ,τi ), where u∆ ∈Ui (∆Ω) is a ∆-hierarchy and τ ∈ ∆Ω is a
useful “dummy" variable. We show that every ∆-hierarchy is represented in L i (Ω). In-
deed, the∆-hierarchy of type (u∆i ,τi ) is equal to u∆i .

In order to prove sufficiency, we study type mappings: mappings that associate the
types in two separate type spaces. We show in Section 4.2 that a type mapping preserves
rationalizable behavior if it preserves conditional beliefs.7 Consider the conditional be-
lief about Ω of type t i in the source type space conditional on a given type t−i of the
opponent. In a type mapping that preserves conditional beliefs, these should be equal
to the belief of the image of t i in the target space, conditional on the image of t−i . We
show sufficiency by focusing on the type mapping that sends types in T to types in L (Ω)
via t i →
�

u∆i (t i ) ,τ∗
�

, where u∆i (t i ) is the∆-hierarchy of t i and τ∗ is some fixed dummy.
We show that this mapping preserves conditional beliefs, and therefore preserves ratio-
nalizable behavior. Since two types with the same∆-hierarchy are mapped to the same
type under this mapping, it follows that their their rationalizable behavior is the same
as that of this (common) image type.

Finally, to show necessity, we pursue a parallel construction (Section 6.1). Any type
in any type space can be interpreted as a rule that associates each game form with the
set of actions that are rationalizable for that type. We construct a space of all rules R
by collecting every rule associated with any type in any type space. We show thatR is
naturally seen as a proper type space with ∆Ω as the space of basic uncertainty. A key
step is to characterize the beliefs of type-rules, which is the main subject of Section 6.2.

We show thatR and U (∆Ω) are essentially the same type space. The mapping that
associates each type inR with its hierarchy of beliefs is an isomorphism of type spaces,
ι : U (∆Ω)→R and ι−1 :R →U (∆Ω) (Theorem 4). The mapping has the property that
for any type in any type space, the rule of this type can be obtained by first computing
its ∆-hierarchy and then applying the mapping ι. Since by definition two distinct rules
inR are distinguished by some game, it follows that two distinct ∆-hierarchies can be
distinguished by some game.

Along the way, we present some new results on the structure of the rationalizability
correspondence. These are presented in Section 5. Finally, Section 7 comments and
contains further examples.

7Mertens and Zamir (1985) show that belief-preserving mappings preserve conventional hierarchies of
beliefs. Under these mappings the conditional belief of the image type, conditional on type of the opponent
t−i , must be equal to the conditional belief of the source type, conditional on all source types of the oppo-
nent that are mapped into t−i . Belief-preserving type mappings do not preserve rationalizable behavior.
See Section 3.1.
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1.5 Related literature

An example similar to ours was discovered independently by Dekel et al. (2005a).8 They
introduce a new version of rationalizability in which players can conjecture correlations
between the opponent’s action and the state beyond those correlations that are explic-
itly modeled in the type space. Conventional hierarchies are sufficient to identify the
sets that are rationalizable under this alternative definition. In the context of our ex-
ample, all actions satisfy their definition regardless of the type space. Indeed, there is
no type in any type space for which action c i is the only rationalizable action under the
alternative concept. Liu (2005) develops a framework for explicitly describing the corre-
lations that distinguish any type space from its reduced-form counterpart in which each
hierarchy of belief is represented by at most one type.

2. BACKGROUND AND PRELIMINARY RESULTS

2.1 Notation

We refer to the identity mapping on a set Y by idY : Y → Y . For any mappings f : A→ B ,
g : A ′ → B ′, we define a product mapping f × g : A × B → A ′ × B ′ by

�

f × g
�

(a ,b ) =
�

f (a ) , g (b )
�

.
If A is a measurable space, then ∆A is the set of all probability measures on A (rel-

ative to its given σ-field). If A and B are measurable spaces, then the space A × B is
endowed with its productσ-field. If A is a topological space, we treat it as a measurable
space with its Borel σ-field, denotedBA , and the space of Borel probability measures
on A is denoted ∆A. If A is a Polish space, then ∆A endowed with the weak∗ topology
is also Polish. For any a ∈ A let δ (a ) ∈ ∆A be the Dirac measure concentrated on a
point a .

For any measure µ ∈ ∆A and integrable function f : A → R we use µ
�

f
�

to denote
the expectation of f with respect to µ. For measures on product spaces, µ ∈ ∆(A × B ),
denote by margA µ∈∆(A) the marginal on A and by CAµ (·) : B →∆A a version of condi-
tional probability over A given b ∈ B which exists whenever A is Polish. Our results do
not depend on the choice of version. Similarly, for any measurable subset B ′ ⊆ B , we
adopt the notation CAµ (B ′) ∈∆A to signify the conditional probability measure over A
given B ′.

When A is a metric space then we denote byK A the space of all non-empty closed
subsets of A with the Hausdorff metric. If A is Polish, then so isK A.

Given two measurable spaces, A, B and a measurable mappingφ : A→ B we can in a
natural way define a mapping that transports probability measures∆φ :∆A→∆B , such
that for any measure µ ∈∆A and any measurable subset B ′ ⊆ B , we have ∆φ

�

µ
�

(B ′) =
µ
�

φ−1 (B ′)
�

.

8See also Bergemann and Morris (2005, Section 2.5) and Battigalli and Siniscalchi (2003, Section 6) for
related discussions.
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2.2 Games

We consider games with two players and take as given a Polish space of basic uncertainty
Ω. A game form (or simply game) over Ω is a tuple G = (u i , A i )i=1,2, where for each i , A i

is a Polish space of actions and u i : A i ×A−i ×Ω→ R is a bounded, measurable payoff
function.

For some purposes it is useful to consider product games: take any two games G 1,G 2,
G k = (Ak

i , u i ). We construct a product game G =G1×G2 = (A i , u i ), where the action sets
in G are the products of the actions sets from the original games, A i = A1

i × A2
i , and

payoffs are given by

u i

��

a 1
i , a 2

i

�

,
�

a 1
−i , a 2

−i

�

,ω
�

= u 1
i

�

a 1
i , a 1
−i ,ω
�

+u 1
i

�

a 2
i , a 2
−i ,ω
�

.

A game G = (u i , A i )i is compact if u i are continuous and A i are compact. A game
G = (u i , A i )i is finite if u i are continuous and A i are finite. We let G denote the class of
all compact games and G F the smaller class of all finite games. Unless we specifically
state a restriction to compact or finite games, our results apply to all games. Note that if
G 1,G 2 are compact or finite, then so is G 1×G 2.

2.3 Type spaces

A type space overΩ, T =
�

Ti ,µi
�

i=1,2, is a pair of measurable spaces Ti and two mappings
µi : Ti → ∆(Ω×T−i ). We say that a type space has weakly measurable beliefs if for any
measurable function f :Ω×T−i →R, the sets

�

t i :µ(t i )
�

f
�

< 0
	

are measurable. We say that a type space has strongly measurable beliefs if there exist
jointly measurable functions βi : Ti ×T−i →∆Ω, such that

βi (t i , t−i ) =CΩµ (t i ) (t−i ) .

Let Tw (Ω) be the collection of all type spaces over Ωwith weakly measurable beliefs and
Ts (Ω) be the collection of all type spaces over Ωwith strongly measurable beliefs.9

A type space over Ω is an implicit way of modeling a collection of hierarchies of be-
lief over Ω. As we discussed in the introduction, under most commonly used solution
concepts, what matters for behavior are hierarchies of belief about conditional beliefs.
We can model these in an analogous way using type spaces over the space of basic
uncertainty ∆Ω. The beliefs of a type t i in such a type space T are probabilities over
∆(∆Ω× T−i ). We interpret these as joint probabilities over the types of the opponent
and conditional beliefs about Ω. We will consider the class of all type spaces over ∆Ω
with weakly measurable beliefs, denoted Tw (∆Ω).

9Obviously any type space with strongly measurable beliefs has also weakly measurable beliefs, Ts (Ω)⊆
Tw (Ω). The connection in the other way is not clear. For any type space T ∈ Tw (Ω), standard theorems
guarantee existence of conditional beliefs β (t i , t−i ) that are measurable in t−i for given t i . We do not know,
in general, whether we can choose conditional beliefs that are jointly measurable. We conjecture that this
is possible for Polish type spaces.
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There is a natural way in which any type space T = (Ti ,µi ) overΩ can be transformed
into a type space T∆ = (T∆i ,µ∆i ) ∈ Tw (∆Ω). Let T∆i = Ti and for any t i ∈ T∆i define
µ∆i (t i ) ∈∆(∆Ω×T−i ) to be the unique probability measure satisfying the following two
conditions:

1. beliefs about opponent types are unchanged,

marg
T∆−i

µ∆i (t i ) =marg
T−i

µi (t i ) ,

2. conditional beliefs of t i ∈ T∆i about ∆Ω given type t−i are a point mass on the
conditional belief t i in Ti given type t−i :

C∆Ωµ
∆
i (t i ) (t−i ) =δ
�

CΩµi (t i ) (t−i )
�

.

(Recall that δ (·) denotes Dirac delta measure.)

The logic behind this construction is the following. The translated beliefsµ∆i (t i ) cap-
ture exactly the joint probability over the opponent’s types and the resulting conditional
beliefs as embodied in µi (t i ). In Appendix C.1 we show that this defines a weakly mea-
surable belief mapping.

LEMMA 1. Suppose that T ∈Ts (Ω). Then T∆ ∈Tw (∆Ω).

2.4 Type mappings and the universal type space

Take two type spaces T = (Ti ,µi ), T ′ = (T ′i ,µ′i ) over the same space of basic uncertainty
X . A type mapping between T and T ′, denoted φ : T → T ′, is a pair of measurable
mappingsφi : Ti → T ′i transporting types from one space to the other.

One can think of a class of type mappings as capturing some notion of equivalency
between types in different type spaces. Two types belong to the same equivalence class
under that notion if they are associated under some type mapping in the class. Roughly
speaking, universal type spaces are those that contain exactly one representative for
each equivalence class. The literature has previously worked with the class of belief-
preserving type mappings.

DEFINITION 1. A type mapping φ between type spaces T , T ′ ∈ Tw (X ) preserves beliefs
if for any measurable subset S′ ⊂X ×T ′−i ,

µ′
�

φ (t i )
��

S′
�

=µ (t i )
�

φ̂−1 �S′
�

�

, (1)

where φ̂ = id×φ.

For an example of a belief-preserving type mapping, recall the two type spaces pre-
sented in the introduction. There is exactly one type mapping between the larger and
the smaller type space. This mapping sends both types t i =+1, −1 into one type t

′

i = ∗.



Theoretical Economics 1 (2006) Hierarchies of belief 29

This type mapping also preserves beliefs. Indeed, type ∗ believes that the two states are
equally likely conditional on the opponent having type ∗ and this is the same belief held
by any type t i conditional on the opponent having a type inφ−1(∗) = {+1,−1}.

For the class of belief-preserving type mappings, the existence of a universal type
space has been shown by Mertens and Zamir (1985), Mertens et al. (1994), Branden-
burger and Dekel (1993), and Battigalli and Siniscalchi (1999) within various formal set-
tings. We present a version of this result below.

THEOREM 1. Let X be a Polish space and Tw (X ) the class of all type spaces over X with
weakly measurable beliefs. There exists a universal type space U (X ) ∈ Tw (X ) such that
for any type space T ∈ Tw (X ), there is a unique beliefs-preserving type mapping u T :
Ti →U (X ).10 Moreover, Ui (X ) is a Polish space and the belief mapping µU (X )

i : Ui (X )→
∆(X ×U−i (X )) is a homeomorphism.

The theorem is a slight generalization of the aforementioned results in that it covers
the case of purely measurable type spaces that we consider. (Previous studies used topo-
logical type spaces with continuous belief mappings.) The proof is an easy adaptation
of the proof due to Mertens et al. (1994) and can be found in Appendix A.

3. INTERIM RATIONALIZABILITY

Throughout the paper, we assume that payoffs in a game G ∈ G depend only on the
actions of both players and the state of the world. Sometimes it is convenient to use
notation that indirectly makes payoff a function of types of the opponent. Given a payoff
function u i : A ×Ω→R, we derive a new payoff function πi : A ×T →R, defined directly
in terms of the types as follows:

πi (a , t ) =βi (t i , t−i )[u i (a i , a−i , ·)].

This payoff is calculated by “integrating out" the residual uncertainty overΩ conditional
on a realized type profile t .

An assessment is a pair of subsets α = (α1,α2) where αi ⊂ Ti ×A i . Alternatively an
assessment can be defined by the pair of correspondences αi : Ti ⇒ A i , with αi (t i ) :=
{a i : (t i , a i ) ∈ αi }. The image αi (t i ) is interpreted as the set of actions that player i of
type t i could conceivably play.

Fix a type space T ∈Ts (Ω) and a game G = (A i , u i ). A behavioral strategy for player i
is a measurable function σi : Ti →∆A i . The expected payoff to type t i of player i from

10In the language of category theory, the universal type space is a terminal object within the category of
type spaces Tw (X ) connected with belief-preserving type mappings as morphisms.
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choosing action a i when the opponent’s strategy isσ−i is given by11

Ui (a i ,σ−i | t i ) =µT
i (t i )[σ−i (t−i )[u i (a i , ·, ·)]]

=

∫

Ω×T−i

∫

A−i

u i (a i , ·,ω)dσ−i (t−i )dµT
i (t i ).

The strategy σi is a selection from the assessment α if for each i , σi (t i ) ∈∆αi (t i ) for all
t i ∈ Ti . Let Σi (α) be the set of all strategies for i that are selections from α.

A conjecture for player i of type t i is a probability measure σ∆−i ∈∆(T−i ×A−i ) such
that its marginal on types of the opponent is equal to the marginal beliefs of type t i ,

marg
T−i

σ∆−i =marg
T−i

µT
i (t i ).

We say that the conjecture is consistent with the assessment α if σ∆−i (α−i ) = 1. (When
α−i is not a measurable set, then we require thatσ∆−i (Y ) = 1 for some measurable subset
Y ⊂ α−i . When this is the case, for ease of exposition we simply write σ∆−i (α−i ) = 1.) We
denote the set of all conjectures of type t i consistent with α by Σ∆ (α | t i ) .

Behavioral strategies and conjectures are equivalent representations of strategic un-
certainty. For any behavioral strategy σ−i ∈ Σ−i (α) and for any t i , there is a conjecture
σ∆−i ∈Σ∆(α | t i ) such that

Ui (a i ,σ−i | t i ) =σ∆−i [πi (a i , ·, t i , ·)] :=Ui (a i ,σ∆−i | t i )

for every a i ∈ A i . Conversely, if σ∆−i is a conjecture for t i , then there is a behavioral
strategyσ−i satisfying the same equalities.12 We work with behavioral strategies or con-
jectures, whichever is most convenient.

An action a i is an interim best-response for t i against a conjectureσ∆−i if Ui (a i ,σ∆−i |
t i ) ≥ Ui (a ′i ,σ∆−i | t i ) for all a ′i ∈ A−i . Let B (α | t i ) denote the set of all interim best-
responses for t i to any conjectureσ∆−i ∈Σ∆ (α | t i ).

An assessment α has the best-response property if every action attributed to player i
is an interim best-reply to some conjecture concentrated concentrated on α, i.e.,

αi ⊂ {(t i , a i ) : a i ∈ B (α | t i )}.

If the above is satisfied with equality, then we say that α has the fixed-point property.

11This payoff function is defined with respect to a specific type space. In order to minimize notation,
here and with similar constructs defined later, we omit explicit reference to this dependence whenever the
context is clear.

12The conjecture associated with a given behavioral strategy is unique, but for any conjecture there will
be many equivalent behavioral strategies which differ on sets of measure zero. Also note that if α is an
assessment that is empty for some type t−i , andσ∆−i ∈Σ∆(α | t i ), then an equivalent behavioral strategyσ−i

will satisfyσ−i (t−i )∈α−i (t−i ) forµ(t i )-almost every t−i . But due to the emptiness, the equivalent behavioral
strategies are not, strictly speaking, selections from α.
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PROPOSITION 1. There exists a maximal (in the sense of set inclusion) assessment with the
fixed-point property.

PROOF. It is easy to verify that the union of assessments with the best-response prop-
erty has the best-response property. Let R be the union of all assessments with the best-
response property. Obviously R is the maximal set with the best-response property. We
claim that R has the fixed-point property, in which case it will be the maximal such set.
If R does not have the fixed-point property then there exists a type t i and action a i such
that a i is an interim best-reply to some conjecture consistent with R . But then we can
add the pair (t i , a i ) to Ri and obtain a larger assessment with the best-response prop-
erty, a contradiction. �

DEFINITION 2. Given a type space T and a game G , the interim rationalizable corre-
spondence is the maximal assessment with the fixed-point property, denoted RG ,T . We
say that a i is interim rationalizable for type t i if a i ∈RG ,T

i (t i ).

Note that in general the set RG ,T
i (t i )may be empty. This can happen in games with

discontinuities where best-replies need not exist. In Section 5 we give conditions under
which the rationalizable sets are non-empty. Those results are used only in the parts of
Section 6 where explicitly noted.

3.1 Type mappings that preserve rationalizability

We conclude this section with a result that is central to our analysis. It gives conditions
under which two types, possibly from different type spaces, are equivalent in terms of
rationalizable behavior. In Section 2.4, we discussed how equivalence relations among
types can be captured by classes of type mappings. Equivalence in terms of belief hierar-
chies was captured by the class of belief-preserving type mappings. We now introduce a
new class of type mappings that capture behavioral equivalence under rationalizability.

Let φ be a type mapping between two type spaces T = (Ti ,µi ), T ′ = (T ′i ,µ′i ), T , T ′ ∈
Ts (X ), defined over the same space of basic uncertainty X . Suppose further that for
every t i there is a measurable mapping φt i : T−i → T ′−i , such that, for any measurable
subset S′ ⊆ T ′−i ,

marg
T ′−i

µ′
�

φ (t i )
��

S′
�

=marg
T−i

µ (t i )
�

φ−1
t i

�

S′
�

�

. (2)

The mappingsφt i are referred to as the dual mappings. We can interpret the dual map-
pingφt i as describing how player i type t i “thinks” that types of the opponent are trans-
ported.

We say that the dual mappings are consistent if for every t i ∈ Ti and every t−i ∈ T−i ,

µ′
�

φt i (t−i )
�

=µ′
�

φ (t−i )
�

. (3)

In other words, under the dual mapping φt i , the beliefs of the opponent are mapped in
a way that is consistent with the underlying type mappingφ.
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We will consider type mappings with consistent duals. First note that ifφ is a belief-
preserving type mapping, then the mappings φi are themselves consistent duals. In-
deed, (3) is satisfied by taking φt i = φi for all t i . But belief-preserving type mappings
do not in general preserve rationalizable sets. Indeed, in Section 2.4 we noted that the
type mapping between type spaces from the introduction preserves beliefs. However
this type mapping does not preserve rationalizable sets. Indeed, as we pointed out in
the introduction, rationalizable behavior is different for types t i = +1, −1 and for type
φ (t i ) = t ′i = ∗.

Our discussion in the introduction points to the main problem: belief-preserving
type mappings do not in general preserve the structure of conditional beliefs about
payoff-relevant events. This motivates the following definition.

DEFINITION 3. Let T , T ′ ∈ Ts (X ). A type mapping φ : T → T ′ preserves conditional
beliefs iff there exist consistent dual mappings φt i such that for any type t i ∈ Ti , for
µi (t i )-almost any type t−i ∈ T−i ,

CXµ (t i ) (t−i ) =CXµ
′ �φ (t i )
��

φt i (t−i )
�

. (4)

In other words, the beliefs of type φ(t i ) about X conditional on the opponent being
of typeφt i (t−i ) are the same as the beliefs of t i conditional on t−i . Our result is that such
type mappings preserve rationalizable sets.

LEMMA 2. Suppose that for type spaces T , T ′ ∈ Ts (Ω) there is a type mapping φ : T → T ′

that preserves conditional beliefs. Then it preserves rationalizable sets, i.e. for every game
G , for all types t i ∈ Ti ,

RG ,T
i (t i ) =RG ,T ′

i

�

φ (t i )
�

.

PROOF. Fix a game G . The proof naturally divides into two parts. First, we show that for
any t i ∈ Ti ,

RG ,T
i (t i )⊂RG ,T ′

i (φ(t i )) (5)

and then we show the opposite direction

RG ,T ′

i (φ(t i ))⊂RG ,T
i (t i ). (6)

To show (5), consider the following assessment for type space T ′:

α′i = φ̂i (R
G ,T
i )
⋃ ⋃

t ′−i∈T ′−i

φ̂t−i (R
G ,T
i ),

where φ̂i =φi × idA . We will show that α′i has the best-response property. This directly
implies (5).

Let us write S′i =φ(Ti )∪∪t−iφt−i (Ti ). Note that for any t ′i ∈S′i ,

α′i (t
′
i ) =
⋃

t i∈φ−1(t ′i )

RG ,T
i (t i )
⋃⋃

t−i

⋃

t i∈φ−1
t−i
(t ′i )

RG ,T
i (t i ) (7)
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and for any t ′i /∈S′i , α′i (t
′
i ) = ;.

Pick t i ∈ Ti . Let t ′i =φ(t i ), a i ∈RG ,T
i (t i ), andσ∆−i ∈Σ∆(R

G ,T
−i | t i ), such that a i is a best

response for t i against a conjectureσ∆−i . We construct a conjecture σ̂∆−i for t ′i as follows:

σ̂∆−i =σ
∆
−i ◦ φ̂

−1
t i

. (8)

To show that this is indeed a conjecture for t ′i , we verify

marg
T ′−i

σ̂∆−i =marg
T ′−i

�

σ∆−i ◦ φ̂
−1
t i

�

=

�

marg
Ti

σ∆−i

�

◦φ−1
t i

=µT
i (t i ) ◦φ−1

t i

=µT ′
i (t
′
i ).

The third equality holds because σ∆−i is a conjecture for t i and the fourth because φt i is
a consistent dual.

We claim (8) implies that for any z i ∈ A i ,

Ui (z i ,σ̂∆−i | t̂ i ) =Ui (z i ,σ∆−i | t i ).

To show this, we first use the fact that φ preserves conditional beliefs to establish that
the type-dependent payoff function πi is preserved under φ. For any action profile a ,
and type profile t̂ ∈ T ,

πT
i (a , t̂ ) =
�

CΩµ
T
i

�

t̂ i
��

t̂−i
�

�

[u i (a , ·)]

=
�

CΩµ
T ′
i

�

φ(t̂ i )
��

φt i (t̂−i )
�

�

[u i (a , ·)]

=πT ′
i (a ,φ(t̂ i ),φt i (t̂−i )).

Next, it follows that for any t̂ i ∈ Ti ,

Ui (z i ,σ∆−i | t̂ i ) =σ∆−i [π
T
i (z i , a−i , t̂ i , t−i )]

=σ∆−i [π
T ′
i (z i , a−i ,φ(t̂ i ),φt i (t−i ))] (integrating over a−i and t−i )

= σ̂∆−i [π
T ′
i (z i , a−i ,φ(t̂ i ), t ′−i )] (integrating over a−i and t ′−i )

=Ui (z i ,σ̂∆−i |φ(t̂ i )).

The third equality holds because by the construction ofσ∆−i (see (8)), for any measurable
subset C ⊂R,

σ̂∆−i ({(t
′
−i , a−i ) :πT ′

i (z i , a−i , t ′i , t ′−i )∈C }) =σ∆−i ({(t−i , a−i ) :πT ′
i (z i , a−i , t ′i ,φt i (t−i ))∈C }.

This establishes our claim.
Next, note that σ̂∆−i is consistent with α′−i , i.e. σ̂∆−i ∈ Σ∆(α

′
−i | t

′
i ). In particular, be-

cause φt i (R
G ,T
−i )⊂α

′
−i , we haveσ∆−i (α

′
−i )≥σ

∆
−i (R

G ,T
−i ) = 1. We have therefore shown that

a i ∈ B (α′ | t ′i ). Since a i was arbitrary, we conclude RG ,T
i (t i )⊂ B (α′ | t ′i ).
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Next consider t ′′i =φt−i (t i ) for some t−i . Because φt−i is a consistent dual, µT ′
i (t
′
i ) =

µT ′
i (t
′′
i ). It follows that

RG ,T
i (t i )⊂ B
�

α′ | t ′i
�

= B
�

α′ | t ′′i
�

.

It now follows from (7) that α′ has the best-response property.
We turn to (6). Construct an assessment for T as follows:

αi (t i ) =
⋃

t−i

RG ,T ′

i (φt−i (t i )).

Pick t i ∈ Ti . For any t−i , the two types φt−i (t i ) and φ(t i ) have the same beliefs in T−i

because φt−i is a consistent dual. Therefore RG ,T ′

i (φt−i (t i )) = RG ,T ′

i (φ(t i )). Thus, αi (t i ) =
RG ,T ′

i (φ(t i )). We will show that α has the best-response property, which implies (6).

Let a i ∈ RG ,T ′

i (φ(t i )) so that there is a conjecture σ̂∆−i ∈Σ∆(R
G ,T ′

−i |φ(t i )) such that a i

is a best response of t i against σ̂∆−i . The following conditions define the corresponding
conjectureσ∆−i for t i :

marg
Ti

σ∆−i =marg
Ti

µi (t i ) (9)

CA−iσ
∆
−i (t−i ) =CA−i σ̂

∆
−i (φt i (t−i )). (10)

We claim that this construction yields (8). Indeed, the marginals are equal:

marg
T ′−i

σ̂∆−i =marg
T ′−i

µT ′
i (φi (t i ))

=

�

marg
T−i

µT
i (t i )

�

◦φ−1
t i

by (2)

=

�

marg
T−i

σ∆−i

�

◦φ−1
t i

by (9)

=marg
T ′−i

�

σ∆−i ◦ φ̂
−1
t i

�

,

and by (10), for t̂−i ∈φt i (Ti ) the conditionals are equal:

CA−i σ̂
∆
−i (t̂−i ) =CA−i

�

σ∆−i ◦ φ̂
−1
i

�

(t̂−i ).

Since φt i (Ti ) has µT ′ (φi (t i ))-probability 1, this completes the argument that (8) is satis-
fied. Thus, the claim from the first half of the proof applies and we can conclude a i is a
best response againstσ∆−i . It remains to show thatσ∆−i ∈Σ∆(α | t i ). This follows because

α−i = φ̂−1
i (R

G ,T ′

−i ), so that

σ∆−i (α−i ) = [σ∆−i ◦ φ̂
−1
i ](R

G ,T ′

−i ) = σ̂
∆
−i (R

G ,T ′

−i ) = 1

where we have again used (8). �
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4. THE MAIN RESULT

In this section we present our main result: ∆-hierarchies are necessary and sufficient
for identifying rationalizable behavior in all games. In the introduction we defined ∆-
hierarchies and demonstrated their construction. Here we present an equivalent defini-
tion that will be more convenient for the formal results.

Recall that any type space T ∈ Ts (Ω) is naturally transformed into a unique type
space T∆ ∈Tw (∆Ω) (Section 2.3). By Theorem 1, the space T∆i is mapped via the belief-

preserving u T∆
i into the universal space U (∆Ω) of all hierarchies of belief over ∆Ω. The

∆-hierarchy of a type is its image in U (∆Ω) under this mapping.

DEFINITION 4. Let T ∈ Ts (Ω). The ∆-hierarchy of a type t i ∈ Ti is the image u T∆
i (t i ) ∈

U (∆Ω).

THEOREM 2. ∆-hierarchies are necessary and sufficient for identifying rationalizable be-
havior. In particular for any T , T̂ ∈Ts (Ω), any t i ∈ Ti , t̂ i ∈ T̂i ,

1. (Sufficiency) if u T∆
i (t i ) = u T̂∆

i (t̂ i ) then RG ,T
i (t i ) =RG ,T̂

i (t̂ i ) for all games G

2. (Necessity) if u T∆
i (t i ) 6= u T̂∆

i (t̂ i ) then there exists a finite game G such that RG ,T
i (t i ) 6=

RG ,T̂
i (t̂ i ).

Moreover, U (∆Ω) does not contain any redundancies:

3. (Non-Redundancy) for any u i ∈Ui (∆Ω), there is a type and a type space t i ∈ Ti ∈Ts (Ω)
such that u i = u T∆

i (t i ).

In the remainder of this section we prove the first and last claims in the statement.
The proof of necessity requires some additional results on the structure of the rational-
izable correspondence. These are presented in subsequent sections.

4.1 Non-redundancy

We begin with the last claim, that U (∆Ω) contains no redundancies. To that end, we
construct a type space L (Ω) that itself includes all possible∆-hierarchies, and such that
the mapping u L(Ω)∆ : L(Ω)→U (∆Ω) is onto. Let the space of types be

L i (Ω) =Ui (∆Ω)×∆Ω.

The label of each type (u i ,τi )∈ L i (Ω)has two coordinates. The first corresponds to some
∆-hierarchy, u i ∈Ui (∆Ω). The second, τi , is a convenient “dummy” variable whose role
will be seen shortly. For every type we define the beliefs

µ
L(Ω)
i (u i ,τi )∈∆(Ω× L−i (Ω))

as the unique measure satisfying the following two conditions:
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1. marginal beliefs over L−i (Ω) are obtained from U (∆Ω),

marg
L−i (Ω)

(u i ,τi ) =µ
U (∆Ω)
i (u i )

2. conditional on the opponent’s type (u−i ,τ−i ) ∈ L−i (Ω) =U−i (∆Ω)×∆Ω, the con-
ditional beliefs about Ω are equal to τ−i ,

CΩµ
L(Ω)
i (u i ,τi ) (u−i ,τ−i ) =τ−i .

These conditional probabilities are measurable (in fact continuous) so that these
beliefs properly define a type space with strongly measurable beliefs, L(Ω)∈Ts (Ω). Note
also that the beliefs of type (u i ,τi )∈ L i (Ω) depend only on the first coordinate u i .

For every u i ∈Ui (∆Ω) there is a type in L(Ω) with that label. It suffices to verify that
the actual ∆-hierarchy of any type in L(Ω) in fact coincides with its label. Indeed, it is

straightforward to check that u L(Ω)∆
i (u i ,τi ) = u i for every (u i ,τi )∈ L i (Ω).

4.2 Sufficiency

To prove sufficiency, we begin by constructing for any T ∈ Ts (Ω) a type mapping into
L(Ω). First, fix an arbitrary τ∈∆Ω and let ini : Ui (∆Ω)→ L i (Ω) be the inclusion mapping
inT

i (u i ) = (u i ,τ) (none of the results below depends on the choice of τ). We may then
define a type mapping l T

i : T → L (Ω) as the following composition:

l T = inT
i ◦u

T∆
i . (11)

Recall that the mapping u T∆
i is the unique belief-preserving type mapping from T∆ to

U (∆Ω). We show in the following lemma that, as a consequence, the mapping l T pre-
serves conditional beliefs.

LEMMA 3. For any type space T ∈Ts (Ω), the type mapping l T : T → L (Ω) preserves condi-
tional beliefs.

PROOF. Let T =
�

Ti ,µT
i

�

. We define the dual mapping for type t i ∈ Ti by

φt i (t−i ) =
�

u T∆
−i (t−i ) ,CΩµ

T
i (t i ) (t−i )
�

.

This is the product of measurable mappings, hence measurable. (The first coordinate
is measurable because of Theorem 1 and the second because T ∈ Ts (Ω).) We verify that
φT

t i
satisfies equation (2) and is therefore a valid dual mapping. Take any measurable set

of types S′ in the space L (Ω), i.e. S′ ⊆ L−i (Ω) =U−i (∆Ω)×∆Ω. We have a sequence of
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equalities:

marg
L−i (Ω)

µ
L(Ω)
i

�

l T (t i )
�

�

S′
�

=marg
L−i (Ω)

µ
L(Ω)
i

�

u T∆
i (t i ) ,τ
�

�

S′
�

=µU (∆Ω)
i

�

u T∆
i (t i )
�

�

S′
�

=µT∆
i (t i )
�n

(t−i ,τ−i ) :
�

u T∆
−i (t−i ) ,τ−i

�

∈S′
o�

=marg
T−i

µi (t i )
�n

t−i :
�

u T∆
−i (t−i ) ,CΩµ

T
i (t i ) (t−i )
�

∈S′
o�

=marg
T−i

µi (t i )
�

φ−1
t i

�

S′
�

�

.

The third equality follows from the fact that u T∆ : T∆→U (∆Ω) preserves beliefs and the
fourth from the definition of beliefs on the space T∆.

We check that φ is consistent: note that for any u i ∈ Ui (∆Ω), any τi , τ′i ∈ ∆Ω,

µ
L(Ω)
i (u i ,τi ) =µ

L(Ω)
i

�

u i ,τ′i
�

so that for any t i ∈ Ti , t−i ∈ T−i ,

µ
L(Ω)
−i

�

l T (t−i )
�

=µL(Ω)
−i

�

u T∆
−i (t−i ) ,τ
�

=µL(Ω)
−i

�

u T∆
−i (t−i ) ,CΩµ

T
i (t i ) (t−i )
�

=µL(Ω)
−i

�

φt i (t−i )
�

.

Verification that l preserves conditional beliefs becomes straightforward:

CΩµ
L(Ω))
i

�

l T (t i )
�

�

φt i (t−i )
�

=CΩµ
L(Ω)
i

�

l T (t i )
�

�

u T∆
−i (t−i ) ,CΩµ

T
i (t i ) (t−i )
�

=CΩµi (t i ) (t−i ) . �

We can thus apply Lemma 2 and conclude that the type mapping l T preserves ratio-
nalizable sets. In particular, for any game G ,

RG ,T (t i ) =RG ,L(Ω)(l T (t i ))

and

RG ,T̂ (t̂ i ) =RG ,L(Ω)(l T̂ (t̂ i )).

The sufficiency part of Theorem 2 now follows immediately because u T∆
i (t i ) =

u T̂∆
i (t̂ i ) implies l T (t i ) = l T̂ (t̂ i ) so that the same set appears on the right-hand sides of

the above equations.

5. STRUCTURE OF THE RATIONALIZABLE CORRESPONDENCE

In this section we analyze the correspondence RG ,T mapping types in a fixed type space
T to their rationalizable sets in a fixed game G . When G is a compact and contin-
uous, this correspondence is non-empty, closed-valued, and measurable in a strong
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sense.13,14 The measurability of the rationalizable correspondence is used extensively
in the proof of necessity.

PROPOSITION 2. For any game G ∈G , for each type space T ∈Ts (Ω), for each type t i ∈ Ti ,
the set RG ,T

i (t i ) of interim rationalizable actions is non-empty and closed. Thus, we can

view RG ,T
i as a function from Ti to K A i . This function is measurable: for every B ∈

BK A i , the set
{t i ∈ Ti : RG ,T

i (t i )∈B}

is a measurable subset of Ti .

The proof of Proposition 2 proceeds in two steps. First, we show that the rationaliz-
able correspondence is non-empty valued and closed if the type space is a Polish space
and satisfies the additional property that the mapping from types to beliefs is continu-
ous in a strong sense.

Precisely, suppose that T is a type space and each Ti is a Polish space. Say that T is
continuous if for each i , the mapping µT

i : Ti →∆(Ω×T−i ) is continuous. If, in addition,
there is a version of the conditional belief mapping βi that is continuous then we say
that T is ∆-continuous. Note that ∆-continuity is a stronger property than continuity
alone. When the type space is ∆-continuous and the game is compact, the rationaliz-
able correspondence is upper hemicontinuous with non-empty values. The proof is in
Appendix E.

PROPOSITION 3. Suppose that T is∆-continuous and G is a compact game. Then RG ,T
i is

upper hemicontinuous with non-empty values.

It now follows from standard results that RG ,T
i is measurable in this case. The second

step in the proof of Proposition 2 is to show that any type space in Ts (Ω) can be measur-
ably mapped into a∆-continuous type space in a way that preserves rationalizable sets.
In particular, the space L(Ω) is∆-continuous.

PROOF OF PROPOSITION 2. First we assume that T is ∆-continuous. In this case, we
can make use of the following fact. Let Y be a topological space, Z be a Polish space and
ϕ : Y → Z a correspondence with non-empty compact values. If ϕ is upper hemicon-
tinuous, then the function ϕ̂ : Y →K Z defined by ϕ̂(y ) = ϕ(y ) is Borel-measurable.15

By Proposition 3, RG ,T
i is upper hemicontinuous with non-empty values. The former

implies in particular that it has closed and hence compact values. This establishes the
Proposition in the case of∆-continuous T .

13It is somewhat surprising that in general the correspondence need not be closed (i.e. upper hemicon-
tinuous) even for compact games with continuous type spaces andΩ compact, indeed even for finite games
when Ω is finite. This is shown by example in Section 7.

14For compact games G , it can also be shown that our fixed-point definition of rationalizability is equiv-
alent to the outcome of iterative elimination of never-best replies. Since none of our results use the latter
characterization, we have focused on the fixed-point characterization that applies to any game, even those
with discontinuities. For a proof of the iterative characterization, see our working paper, Ely and Pęski
(2004, Proposition 6).

15See Aliprantis and Border (1994, Corollary 14.70).
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Notice that L (Ω) is ∆-continuous: the beliefs conditional on a given type of the op-
ponent (τ−i , u−i ) are equal toτ−i regardless of the type of player i . Hence, the rationaliz-
able correspondence on L (Ω) is upper hemicontinuous (hence closed) and measurable.

Now let T be any type space in Ts (Ω). By Lemmas 2 and 3 there is a measurable
mapping l T : T → L(Ω) that preserves rationalizable sets. Thus, for any t i ∈ Ti ,

RG ,T
i (t i ) =RG ,L(Ω)

i (l T (t i )).

In other words, the correspondence RG ,T
i is the composition of this measurable map-

ping and the closed and measurable correspondence RG ,L(Ω)
i . It follows that RG ,T

i is non-
empty, closed-valued, and when viewed as a function, measurable. �

6. NECESSITY

This section deals with the proof of the necessity part in Theorem 2. To do this, we
introduce a new type space,R (∆Ω), which can be viewed as the universal type space for
rationalizability. Here we briefly outline the construction.

For every type t i in any type space, we can define a rule of rationalizable behavior
(or simply a rule), ρ (t i ), which is a mapping associating any compact game G ∈ G with
a subset of rationalizable actions of type t i in this game G . By definition, for any two
types with different rules, there is a game G such that these two types have different
rationalizable sets in G . We may collect all rules of player i that are derived from some
type in some type space into the setRi .

Now, we can restate the result that we are looking for: we want to show that two types
with different∆-hierarchies, u T∆ (t i ) 6= u T ′∆ (t ′i ), necessarily lead to two different rules of
behavior, ρ(t i ) 6= ρ(t ′i ). In fact, we show below something stronger. There is a natural
bijective mapping, ι, between rules in R and hierarchies in U (∆Ω), with the property
that for any type t i ∈ Ti , its rule is equal to the value of the mapping computed at this
type’s∆-hierarchy,

ρ (t i ) = ι
�

u T∆ (t i )
�

.

The proof proceeds as follows. The crucial step is to observe thatR can be seen as
a type space over ∆Ω. For this we need to define beliefs of a rule ri ∈ Ri about ∆Ω and
rules of the opponentR−i . Here is how it can be done. Take any type t i ∈ Ti that leads
to the rule ri and find the beliefs of t i about ∆Ω and types of the opponent T−i (these
are the beliefs of t i in type space T∆ as in Section 2.3). Next, we identify the types of the
opponent with their rules and transform in this way the beliefs of t i into beliefs about
∆Ω and the rules of the opponent.

The first main result in this section (Theorem 3) is that any two types whose beliefs
are distinct when viewed in this way must also give rise to distinct rationalizable rules.
The proof involves constructing a finite game in which the two types have distinct ra-
tionalizable sets. This allows us to complete the description of the type spaceR (∆Ω) by
defining the belief mapping. The beliefs of a type ri are derived as above from the beliefs
of any type t i with such a rule. The theorem implies (see Proposition 4) that the beliefs
will not depend on which such t i we choose (there are of course many).
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Having constructed the type space R (∆Ω) we present a result that justifies its in-
terpretation as the universal type space for rationalizability. We show how to embed
R (∆Ω) in a type space over Ω,R (Ω). This is analogous to our previous derivation of the
type space L(Ω) ∈ Ts (Ω) from U (∆Ω). So, types inR (Ω) are labeled by two parts: a rule
ri and a “dummy" variable τi ∈∆Ω. We show that this labeling is internally consistent—
typesR (Ω)with a label ri (and whatever dummy) actually have ri as their rule,

ri =ρ (ri ,τi ) .

Thus, all possible rationalizable rules are represented by a type.
Finally, we collect together all the mappings defined in this and the previous sec-

tions. Each rule ri can be mapped into a type (ri ,τ∗) ∈ R (Ω) (for some fixed dummy
τ∗). Since (ri ,τ∗) is a type in a type space over Ω, we can compute its∆-hierarchy (using
methods from Section 4). This defines a mapping fromR (∆Ω) to U (∆Ω). In fact, this is
the same mapping as the Mertens-Zamir belief preserving mapping guaranteed by The-
orem 1. Going the other way, we can map any ∆-hierarchy u i into type (u i ,τ∗) ∈ L (Ω).
Since (u i ,τ∗) is a type in a type space over Ω, we may compute its rationalizable rule
ri . This defines a mapping from U (∆Ω) to R (∆Ω). We show that the former mapping
is an inverse of the latter (Theorem 4). This finishes the proof of the necessity part of
Theorem 2.

As a by-product (and a method) of the proof, we have showed that the space of all
rules R , which is defined in a highly abstract way, can be naturally reinterpreted as a
type space. This fact is surprising—there is no a priori reason why a universal space for
a solution concept could be characterized in such a way. We do not know whether this
fact is an accident or consequence of some deeper relation.

6.1 The space of rationalizable rules

Here we define rationalizable rules. The set of all such rules will be used to define a type
space over∆Ω. We begin with the following sets16 for each i :

Si =
∏

G∈G
K AG

i .

Any element ri of Si can be viewed as a rule that assigns a (closed) subset of AG
i to

each G ∈G—recall thatK AG
i is a compact Polish space with the Hausdorff metric. The

value of a rule ri on a particular game G ∈ G is denoted by ri (G ). We equip Si with the
associated product topology and Borelσ-algebra.

A rule ri is rationalizable if there exists a type space T and a type t i ∈ Ti such that
RG ,T

i (t i ) = ri (G ) for every G ∈ G . We use the notation ρT
i : Ti → Si for the mapping

16We are implicitly treating the class of compact, continuous games G as a set in the following definition
and elsewhere. To see that this is valid, recall that by Uryshon’s Metrization Theorem (see Aliprantis and
Border 1994), any Polish action space can be embedded in the Hilbert cube H= [0, 1]N. Thus any compact
game can be equivalently viewed as a subset of the setK H×K H× F (H×H×Ω) where F (X ) is the set of
real-valued functions on X .
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that associates types in T with their corresponding rules. Let Ri be the subset of Si

consisting of all rationalizable rules, i.e.

Ri = {ri ∈Si : ri =ρT
i (t i ) for some T ∈Ts (Ω) and some t i ∈ Ti }.

The space Ri inherits the topology and σ-algebra from Si . The derived σ-algebra is
denoted BRi . We pause here to record the following important fact used repeatedly
later (the proof can be found in Appendix C.2).

LEMMA 4. For any type space T ∈Ts (Ω), the mapping ρT
i : Ti →Ri is measurable.

Our goal is to treatR as a type space over∆Ω by assigning beliefs to each rule. To do
this, first find some type space T and type t i ∈ Ti , such that ρT

i (t i ) = ri . Now consider
the corresponding type space T∆ over ∆Ω. The beliefs µ∆i (t i ) of t i in T∆ assign proba-
bilities to the types of the opponents and∆Ω. The mappingρ−i induces a mapping that
transforms these into beliefs over the opponent’s rules and∆Ω, as follows:

µ∆i (t i )→∆
�

id∆Ω×ρT
−i

��

µ∆i (t i )
�

∈∆(∆Ω×R )

We would like to take these to be the beliefs of the rule ri = ρi (t i ). One poten-
tial complication arises from the fact that many different types (in many different type
spaces) can induce the same rule. The beliefs of ri would be well-defined only if all
types that generate the rule ri also generate the same beliefs. The result proved in the
next section implies that this is indeed the case.

6.2 Rationalizable beliefs in a given game

In this section we prove a fundamental intermediate result in the proof of necessity. We
fix a game G ∈G , a type space T ∈Ts (Ω), and T∆, its corresponding type space over∆Ω.
Let us identify the types of player−i with their sets of rationalizable actions in G , i.e. via
the mapping t−i → RG ,T

−i (t−i ). Now for any t i the beliefs µ∆i (t i ) naturally induce beliefs
over∆Ω and the possible rationalizable sets of the opponent:

$G ,T (t i ) :=∆
�

id∆Ω×RG ,T
−i

��

µ∆i (t i )
�

∈∆(∆Ω×K AG
−i ).

This way of viewing the beliefs of t i strips away all type-space specific details except
those that are intrinsically relevant for rationalizability in the particular game G . We
call $G ,T (t i ) the rationalizable beliefs for G . Note the relationship between $G ,T (t i )
and the beliefs over rules presented in the previous subsection. Since RG ,T

−i (t−i ) =
ρ−i (t−i )[G ], they are the marginals of the latter corresponding to just the specific game
G .

Consider two types t i , t ′i whose beliefs agree when viewed in this way, i.e.$G ,T (t i ) =
$G ,T ′ (t ′i ). It is not hard to see that these types must have the same rationalizable sets in
G .17 We are interested in a converse. However, if$G ,T (t i ) 6=$G ,T ′ (t ′i ), it does not follow

17The rationalizable actions of a type are just the set of best-replies to all conjectures about rationalizable
actions of the opponent and states of the world. The condition implies that the two types have the same
set of possible conjectures, hence the same set of best-replies.
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that t i and t ′i necessarily have distinct rationalizable sets in G .18 Nevertheless we can
show that if two types have differing beliefs relative to G , then there is another game G ′

in which their rationalizable sets differ. Moreover G ′ is a finite game even if G is not.

THEOREM 3. Let G be any compact game. Let T , T ′ ∈ Ts (Ω) and consider any two types,
t i ∈ Ti and t ′i ∈ T ′i . If t i and t ′i differ in terms of their rationalizable belief in game G , i.e.

$G ,T (t i ) 6=$G ,T ′
�

t ′i
�

,

then there is a finite game G ′ in which t i and t ′i have distinct rationalizable sets, i.e.

RG ′,T
i (t i ) =RG ′,T ′

i

�

t ′i
�

.

For the proof of Theorem 3, we need a technical lemma whose proof is in Appendix
B. The lemma establishes that any two distinct beliefs can be “separated” by a certain
class of function. The function will be used to construct payoffs in the game mentioned
in the statement of Theorem 3.

LEMMA 5. For any game G = (A i , u i ) and µ, µ′ ∈∆(∆Ω×K A−i ), if µ 6=µ′ then there are
natural numbers N1, N2 and a continuous bounded functionψ : {1, . . . , N1}×AN2

−i ×Ω→
[0,∞) such that for f :∆Ω×K A−i →R defined by

f (τ, K ) = max
k=1,...,N1

sup
a 1,...,a N2∈K

τ
�

ψ
�

k , a 1, . . . , a N2 ,ω
��

,

we have

µ
�

f
�

6=µ′
�

f
�

.

PROOF OF THEOREM 3. Let N1, N2, ψ, and f be as given by Lemma 5. Suppose w.l.o.g.
that in particular

$G ∗,T (t i )
�

f
�

<$G ∗,T ′
�

t ′i
�

�

f
�

.

Find λ> 0, such that

$G ∗,T (t i )
�

λ f −1
�

< 0<$G ∗,T ′
�

t ′i
�

�

λ f −1
�

.

We will prove the theorem by constructing a game G = (A j , u j ) such that RG ,T (t i ) 6=
RG ,T (t ′i ).

First, find a game G0 = (A0
j , u 0

j ) such that A0
−i = {1, . . . , N1} and all actions of player

−i are rationalizable for all types of player −i , i.e. for any t−i ∈ T−i and any t ′−i ∈ T ′−i ,

18A simple counterexample, but by no means the only one, is a game in which player i is indifferent
among all of his actions in any state ω ∈ Ω, but player −i is not. Different types of −i may have distinct
rationalizable sets so that different types of player i will have distinct beliefs about the rationalizable sets
of −i . Despite this, the rationalizable actions will be the same for all types of i .



Theoretical Economics 1 (2006) Hierarchies of belief 43

RG0,T
−i (t−i ) = RG0,T ′

−i

�

t ′−i

�

= A0
−i . (Such a game always exists.) Denote Z = {0, 1} and

define sets of actions in game G as

A i = A0
i ×
�

A∗i
�N2 ×Z ,

A−i = A0
−i ×
�

A∗−i

�N2
.

Payoffs of player −i are given by

u−i

��

a 0
−i , a ∗−i ,1, . . . , a ∗−i ,N2

�

,
�

a 0
i , a ∗i ,1, . . . , a ∗i ,N2

, z
�

,ω
�

= u 0
−i

�

a 0
−i , a 0

i ,ω
�

+
N2
∑

k=1

u ∗−i

�

a ∗−i ,k , a ∗i ,k ,ω
�

(in particular they do not depend on z ) and payoffs of player i are given by

u i

��

a 0
i , a ∗i ,1, . . . , a ∗i ,N2

, z
�

,
�

a 0
−i , a ∗−i ,1, . . . , a ∗−i ,N2

�

,ω
�

= u 0
i

�

a 0
i , a 0
−i ,ω
�

+
N2
∑

k=1

u ∗i
�

a ∗i ,k , a ∗−i ,k ,ω
�

+ z
�

λψ
�

a 0
−i , a−i ,1, . . . , a−i ,N2 ,ω

�

−1
�

.

We show that the rationalizable sets for types t i and t ′i are different in G . First ob-
serve that due to the product structure of the game G , for any type space S, for any type
s−i ∈S−i ,

RG ,S
−i (s−i ) = A0

−i ×
�

RG ∗,S
−i (s−i )
�N2

and for any s i ∈Si ,

RG ,S
i (s i ) =RG0

i (s i )×
�

RG ∗,S
i (s i )
�N2 ×Zi (s i ) ,

where Zi (s i )⊆Z .
In the type space T , consider the (pure) behavioral strategy of player−i that for type

s−i selects a 0
−i ∈ {1, . . . , N1} and (a ∗−i ,1, . . . , a ∗−i ,N2

) from RG ∗,S
−i (s−i ) to maximize the ex-

pression βi (t i , s−i )[ψ(a 0
−i , a ∗−i ,1, . . . , a ∗−i ,N2

,ω)]. By the measurable maximum theorem,

this defines a measurable selection from RG ,T
−i .19 Call this strategy σ−i . We can define

the analogous strategyσ′−i for type space T ′ where type t ′i replaces t i in the definition.
We calculate the payoff to type t ′i of player i from playing z = 1 againstσ′−i :

µ′i
�

t ′i
�



λ · max
k=1,...,N1

sup
a 1,...,a N2∈K

ρT ′
i

�

t ′i
��

s ′−i

�

�

ψ
�

k , a 1, . . . , a N2 ,ω
��

−1





=$G ∗,T ′
�

t ′i
�

�

λ f −1
�

> 0.

19See Aliprantis and Border (1994, Theorem 14.91). We need to check only that the mapping
βi (t i , ·)
�

ψ
�

a 0
−i , a ∗−i ,1, . . . , a ∗−i ,N2

,ω
��

is measurable in s−i and RG ∗ ,S
−i (s−i ) is a measurable correspondence.
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Thus, 1 ∈ Zi

�

t ′i
�

. On the other hand, the strategy σ−i clearly maximizes, among all ra-
tionalizable strategies for player−i in type space T , the payoff that type t i could receive
from playing z = 1 and

µi (t i )



λ · max
k=1,...,N1

sup
a 1,...,a N2∈K

ρT
i (t i ) (s−i )
�

ψ
�

k , a 1, . . . , a N2 ,ω
��

−1





=$G ∗,T (t i )
�

λ f −1
�

< 0.

Hence 1 /∈Z (t i ). �

6.3 The universal type space for rationalizability

Theorem 3 allows us to complete the description ofR (∆Ω) by defining beliefs. Let ri be
any rule and t i an arbitrary type such that ρi (t i ) = ri . We define

µ
R (∆Ω)
i (ri ) :=∆
�

id∆Ω×ρT
−i

��

µ∆i (t i )
�

.

The question raised in Section 6.1 is whether these beliefs are well-defined, in par-
ticular whether they depend on the choice of t i . We can interpret Theorem 3 as stat-
ing that all single-game marginals of these beliefs are independent of the choice of t i .
The following proposition extends the conclusion to the entire measure by an appeal to
product games and an application of Kolmogorov’s extension theorem.

PROPOSITION 4. For any two type spaces T , T ′ ∈Ts (Ω) if two types t i ∈ Ti , t ′i ∈ T ′i have the
same rationalizable sets in every finite game

RG ,T
i (t i ) =RG ,T ′

i (t ′i ) for all G ∈G F

then they also generate the same beliefs about the conditional beliefs and the opponent’s
rules,

∆
�

id∆Ω×ρT
−i

��

µ∆i (t i )
�

=∆
�

id∆Ω×ρT ′
−i

��

µ∆i
�

t ′i
��

.

PROOF. By the Kolmogorov extension theorem, it is enough to show that for any finite
number of games G1, . . . ,Gk ∈G we have

marg
∆Ω×K A

G1
−i ...×K A

Gk
−i

∆
�

id∆Ω×ρT
−i

��

µ∆i (t i )
�

= marg
∆Ω×K A

G1
−i ×···×K A

Gk
−i

∆
�

id∆Ω×ρT
−i

��

µ∆i
�

t ′i
��

.

The last equality is equivalent to

∆
�

id∆Ω×RG1,T
−i × · · ·×RGk ,T

−i

�

�

µ∆i (t i )
�

=∆
�

id∆Ω×RG1,T
−i × · · ·×RGk ,T

−i

�

�

µ∆i
�

t ′i
��

.

To show this we consider product games (defined in Section 2). Observe that the set of
rationalizable actions in the product game G =G1×· · ·×Gk is just the product of the sets
rationalizable actions in the component games games G1, . . . ,Gk . This means that

∆
�

id∆Ω×RG1,T
−i × · · ·×RGk ,T

−i

�

�

µ∆i (t i )
�

=$G ,T (t i )

∆
�

id∆Ω×RG1,T
−i × · · ·×RGk ,T

−i

�

�

µ∆i
�

t ′i
��

=$G ,T
�

t ′i
�

.
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By Theorem 3, if t i and t ′i have the same rationalizable sets in all finite games, then the
same belief appears on the right hand sides. This concludes the proof. �

Having defined the beliefs, we must now show that the belief mapping is weakly
measurable, so that R (∆Ω) is a well-defined type space. The proof can be found in
Appendix C.2.

PROPOSITION 5. The belief mapping µRi :Ri →∆(∆Ω×R−i ) is weakly measurable. Thus
R (∆Ω)∈Tw (∆Ω).

Next, we will embedR (∆Ω) within a type space over the basic space of uncertainty
Ω to verify that our construction is internally consistent, i.e. the rationalizable behavior
of a type ri is indeed ri . The construction is directly analogous to our previous construc-
tion of L(Ω) from U (∆Ω).

Precisely, we define a type spaceR (Ω) over Ω in the following way. LetRi ×∆Ω be
the space of types for player i . For every type (ri ,τi )∈Ri ×∆Ωwe define the beliefs

µ
R (Ω)
i (ri ,τi )∈∆(Ω× (R−i ×∆Ω))

as the unique measure satisfying the following two conditions:

1. marginal beliefs over the opponent’s types are obtained fromR (∆Ω),

marg
∆Ω×R−i

µ
R (Ω)
i (ri ,τi ) =µRi (ri )

2. conditional on the opponent’s type (r−i ,τ−i ), the beliefs about Ω are equal to τ−i ,

CΩµ
R (Ω)
i (ri ,τi ) (r−i ,τ−i ) =τ−i .

These conditional probabilities are measurable (in fact continuous) so that these
beliefs properly define a type space with strongly measurable beliefs,R (Ω)∈Ts (Ω).20

Finally, to justify referring to R (∆Ω) as the universal space for rationalizability (in
addition to more instrumental purposes later on), we now show that the construction
is internally consistent. In particular, each type inR (Ω) is “labeled” by a rationalizable
rule. We will demonstrate that the actual rule of a type coincides with its label.

Fix an arbitrary τ ∈ ∆Ω. For any type space T ∈ Ts (Ω), consider the type-mapping
φT : T →R ×∆Ω defined by

φT
i (t i ) = (ρT

i (t i ),τ).

The measurability ofφT follows from Lemma 4.

20The construction of the type spaceR (Ω) over Ω is somewhat arbitrary. In fact, there are many ways to
construct a valid model (among type spaces over Ω) forR (∆). (By contrast, the type spaceR (∆) is unique
up to isomorphisms, as we prove later.) We have chosen the construction in the text as it is the most natural
and convenient for expositional purposes.
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PROPOSITION 6. For any type space T ∈Ts (Ω), the type mapping φT : T →R (Ω) preserves
conditional beliefs. Hence, it preserves rationalizable sets. Moreover, for any rule ri ∈ Ri

and any τi ∈∆Ω,
ri =ρ

R (Ω)
i (ri ,τi ) .

PROOF. We define the dual mapping as follows: for each type t i ∈ Ti let

φt i (t−i ) =
�

ρT
−i (t−i ) ,CΩµi (t i ) (t−i )

�

.

The measurability follows from Lemma 4. Following exactly the line of argument used
in the proof of Lemma 3, we may check that these are consistent duals and that φ is a
conditional-belief preserving type mapping.

Take now any rationalizable rule ri ∈ Ri and an arbitrary τ̂ ∈ ∆Ω. There is a type
in a type space t i ∈ Ti such that ri = ρT

i (t i ). Since the type mapping φT preserves
rationalizable sets, we have

ri =ρT
i (t i ) =ρ

R (Ω)
i (ri ,τ) =ρR (Ω)i (ri , τ̂) .

The last equality comes from the fact that beliefs of types inR (Ω), hence also their ra-
tionalizable sets, depend only on the ri -coordinate. �

COROLLARY 1. The following statements are equivalent.

(i) ri = r ′i .

(ii) ri and r ′i coincide for all finite games.

(iii) µR (∆Ω)i (ri ) =µ
R (∆Ω)
i (r ′i ).

PROOF. The implication (i) =⇒ (ii) is trivial. The implication (ii) =⇒ (iii) is a restate-
ment of Proposition 4. To show (iii) =⇒ (i), consider the types types (ri ,τ) and (r ′i ,τ) in
R (Ω) for arbitrary τ ∈ ∆Ω. By (iii) and the construction of R (Ω), they have the same
beliefs. Thus, they have the same rationalizable sets in every game, i.e. the same rule. By
Proposition 6 the rule of (ri ,τ) is ri and the rule of (r ′i ,τ) is r ′i . Thus ri = r ′i . �

6.4 R (∆Ω) is isomorphic to U (∆Ω)

Finally, we show the central result of the paper: the two spaces U (∆Ω) and R (∆Ω), al-
though described in different ways, are equivalent in terms of their relevant structure. In
particular we show in this subsection that they are isomorphic under a belief-preserving
type mapping. The following lemma plays an important role.

Define the projection projT : T ×∆Ω → T by projT (t i ,τi ) = t i , and for arbitrary
τ∈∆Ω the inclusion inT,τ : T → T ×∆Ω by inT,τ(t i ) = (t i ,τ), so that

projT ◦ in
T,τ = idT .

The next lemma states a handy property that connects the category of type spaces
over Ωwith type spaces over∆Ω. (It is proved in Appendix D.)
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LEMMA 6. Let S, T ∈Tw (∆Ω).

(i) For any belief preserving type mappingφ∆ : S→ T , the composite mapping

φ = inT,τ ◦φ∆ ◦proj
S

is a conditional beliefs preserving type mappingφ : S×∆Ω→ T ×∆Ω.

(ii) Suppose different types in T have different beliefs, t i 6= t ′i =⇒ µi (t i ) 6= µi

�

t ′i
�

.
Then for any conditional beliefs preserving type mappingφ : S×∆Ω→ T ×∆Ω, the
composite mapping

φ∆ = proj
T
◦φ ◦ inS,τ

is a belief preserving type mappingφ∆ : S→ T .21

The property assumed in the second part of the lemma is satisfied by both spaces
U (∆Ω) andR (∆Ω). In the former case, this is the last part of the statement of Theorem 1.
In the latter case, this is Corollary 1.

THEOREM 4. There are unique beliefs-preserving type mappings ι : U (∆Ω)→R (∆Ω) and
ι−1 : R (∆Ω)→U (∆Ω). Either mapping is the inverse of the other: ι−1 ◦ ι = idU (∆Ω) and
ι ◦ ι−1 = idR (∆Ω).

PROOF. Existence and uniqueness of the type mapping ι−1 is assured by Theorem 1.
In order to show existence of a beliefs-preserving type mapping from U (∆Ω) toR (∆Ω),
note first that by the first half of Proposition 6, there is a conditional beliefs-preserving
type mapping φL(Ω),τ : L (Ω) → R (Ω). The second part of Lemma 6 then guarantees
existence of a beliefs-preserving mapping

�

φL(Ω),τ
�∆ : U (∆Ω)→R (∆Ω).

Suppose now that we have two different belief-preserving mappings ι1, ι2 : U (∆Ω)→
R (∆Ω). There is u i ∈ Ui (∆Ω) such that ι1 (u i ) 6= ι2 (u i ). By the first part of Lemma 6
there are then two type mappingsφ1,φ2 : L (Ω)→R (Ω) that preserve conditional beliefs
and satisfy φ1 (u i ,τ) = (i 1 (u i ) ,τ) 6= (i 2 (u i ) ,τ) = φ2 (u i ,τ). By Lemma 2, φ1 (u i ,τ) and
φ2 (u i ,τ) must have the same rationalizable rules. But this is a contradiction because
Proposition 6 shows that the rationalizable rule forφ1 (u i ,τ) is ι1(u i )while the rational-
izable rule forφ2 (u i ,τ) is ι2(u i ).

The equality ι−1 ◦ i = idU (∆Ω) comes from the uniqueness of belief-preserving type
mapping from U (∆Ω) to itself. The second equality i ◦ ι−1 = idR (∆Ω) is a consequence of
the fact that i ◦ι−1 would generate a conditional belief preserving mapping fromR (Ω) to
itself (the first part of Lemma 6 guarantees that). Such a mapping has to preserve rules,
so it has to preserve r -coordinates of types inR (Ω) This implies that i ◦ ι−1 = idR (∆Ω). �

21Within the framework of category theory, the lemma defines functors between the category of type
spaces over Ω (with morphisms corresponding to conditional-belief-preserving type mappings) and the
category of type spaces over∆Ω (with morphisms corresponding to belief-preserving type mappings).
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6.5 Proof of necessity

The structure of the proof can be seen via the following diagram which collects various
mappings defined in the paper, where the type mapping ι̃ : L(Ω)→R (Ω) is defined as
follows

ι̃ = inR ,τ ◦ι ◦proj
U

.

R (∆)

ι−1zzuuuuuuuuu

U (∆Ω)

ι
::uuuuuuuuu

inU ,τ $$IIIIIIIII R (Ω)

projR
ccHHHHHHHHH

L(Ω)
ι̃

;;vvvvvvvvv

T∆

u T∆

OO

T

φT,τ

OO

//
id

oo

Suppose u T∆
i (t i ) 6= u T∆

i (t−i ). By Corollary 1, in order to show that the two types have
distinct rationalizable sets in some finite game, it suffices to show that they have distinct
rationalizable rules. Consider the route in the diagram T → T∆→U (∆Ω)→ L(Ω), which
by Lemma 3 preserves rationalizable sets. The images of t i and t ′i under this mapping

are elements of L(Ω) with distinct first coordinates (namely u T∆
i (t i ) and u T∆

i (t
′
i )). We

show that they have distinct rationalizable sets which implies the same for t i and t ′i ,
concluding the proof.

Because ι is one-to-one (by Theorem 4), if two types in L(Ω) have distinct first coor-
dinates, then their images under ι̃ also have distinct first coordinates. And by Proposi-
tion 6, if two types inR (Ω) have distinct first coordinates, then they have distinct ratio-
nalizable rules. In particular there is some game in which they have distinct rationaliz-
able sets. Now by Theorem 4 and Lemma 6 the mapping ι̃ preserves conditional beliefs.
By Lemma 2 it preserves rationalizable sets. We conclude that two types in L(Ω) with
distinct first coordinates have distinct rationalizable rules. �

7. COMMENTS AND OTHER EXAMPLES

7.1 Example

The conventional universal type space U (Ω) is not rich enough from the point of view of
solution concepts such as Bayesian equilibrium or Rationalizability. We have previously
shown this by demonstrating that there are types whose rationalizable rules are not rep-
resented by any type in U (Ω). Here we present an example that makes the point even
stronger: there is an action that is not rationalizable for any type in U (Ω), yet as we show
below, it is easy to construct simple, perfectly standard type spaces in which the action
is rationalizable. Consider the two-player game with two states of the world with payoff
matrix given in Figure 2.
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a 2 b2 b ′2 a ′2
a 1 1, 1 1,−9 −1,−9 −1,−1
b1 −9, 1 0, 0 −9,−9 −9,−1
b ′1 −9,−1 −9,−9 0, 0 −9, 1
a ′1 −1,−1 −1,−9 1,−9 1, 1

ω=+1

a 2 b2 b ′2 a ′2
a 1 1, 1 1,−9 −1,−9 −1,−1
b1 −9, 1 −9,−9 0, 0 −9,−1
b ′1 −9,−1 0, 0 −9,−9 −9, 1
a ′1 −1,−1 −1,−9 1,−9 1, 1

ω=−1

FIGURE 2. Actions b i and b ′i are not rationalizable in U (Ω).

We will show that neither b i nor b ′i are rationalizable for any type in U (Ω). Note first
that an equal mixture between a i and a ′i guarantees a payoff of 0. Thus, b i and b ′i are
best-replies only if player i is certain that the opponent plays an action in {b−i ,b ′−i }, and
the action is correlated with the state. Now if i assigns greater than 1

2 probability to state
+1, then it is easily verified that action a i achieves strictly higher payoff than b i , and
action a ′i achieves strictly higher payoff than b ′i , regardless of the opponent’s strategy.
Likewise, if the probability of state +1 is less than 1

2 , then a i must do better than b ′i and
a ′i better than b i . Thus, actions b i or b ′i can be rationalizable only for types who assign
the two states equal probability and who assign probability 1 to opponent’s types for
whom b−i or b ′−i are rationalizable. Now the game is symmetric, so the same analysis
applies to player −i with the players’ roles reversed. Putting these two conclusions to-
gether, actions b i and b ′i are rationalizable only for types of player i who assign equal
probability to the two states and probability 1 to the event that player −i has the same
beliefs and assigns probability 1 to the event that b i and b ′i are rationalizable for i . By
induction, b i and b−i are rationalizable only for those types of player i for whom it is
common-knowledge that the two states are equally likely. Let υi be the type in Ui (Ω)
with this hierarchy of beliefs, and υ−i the analogous type for player −i . Note that in
U (Ω), type υi assigns probability 1 to υ−i and equal probability to the two states. But
then no matter what mixed action is played by υ−i , it is never correlated with the state.
Thus b i and b ′i can never be best-replies, hence never be rationalizable for type υi .

Nevertheless, both b i and b ′i are rationalizable for all types in the type space from
the introduction. Indeed, any pure strategy profile in which the two types of each player
play different actions in {b i ,b ′i } is a Bayesian Nash equilibrium.

7.2 More than two players

In games with more than two players, there are many natural ways to extend the defi-
nition of rationalizability. This is well-understood already in the context of complete-
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information where correlated rationalizability allows players to conjecture that the op-
ponents’ play is correlated while independent rationalizability does not. When infor-
mation is incomplete, there is an even greater variety of plausible extensions due to the
greater variety of ways in which conjectures can be correlated. First, a player may sup-
pose that the opponents achieve correlation by conditioning their play on the outcome
of some randomization device that is uncorrelated with the state of the world. A differ-
ent set of conjectures would result if a player were to entertain the possibility that the
opponents communicated their private information to one another prior to choosing
their actions. Combining these two possibilities would lead to a larger set of conjec-
tures. Of course the assumption that the opponents cannot correlate at all would lead
to the smallest set of conjectures. Each of these four possibilities would be extensions of
interim rationalizability in the sense that they would reduce in two player games to the
definition we have employed. Our method of analysis can be adapted to these versions
of rationalizability. Our conjecture is that the necessary and sufficient conditions will be
different for each of these different versions. The task of characterizing these conditions
is left for future work.

Finally, one version of rationalizability that is not an extension of interim ratio-
nalizability is the concept of correlated interim rationalizability studied by Dekel et al.
(2005a). In that concept a player may conjecture that the opponents condition on a
randomization device that is correlated in arbitrary ways with the unknown state of the
world. This removes the distinction between the two type spaces we presented in the
introduction. Dekel et al. (2005a) show more generally that correlated interim rational-
izability depends only on conventional hierarchies of belief.

7.3 Upper hemicontinuity

The literature has had some interest in finding the “right” topology on the universal type
space to capture similarity of types with respect to their strategic behavior.22 One re-
quirement of such a topology is that the rationalizable correspondence should be up-
per hemicontinuous. Our results shed some light on this requirement. We have shown
(Proposition 3) that a sufficient condition for upper hemicontinuity is that the topology
be fine enough so that conditional beliefs are continuous. Here we present an exam-
ple where this strong form of continuity fails and the correspondence fails to be upper
hemicontinuous.

Suppose that Ω = {−1, 1} and consider the game from the introduction and the fol-
lowing type space: Ti = [−1, 1] and beliefs defined by

µi (t i ) (t−i ,ω) =

(

1
2 if t−i ∈ {t i ,−t i } and sign[t i ·ω] = sign[t−i ]

0 otherwise.

It is easy to verify that these beliefs are generated by a common prior and are con-
tinuous as a function of t i . However conditional beliefs over Ω exhibit a discontinuity at

22See Monderer and Samet (1997), Kajii and Morris (1998), Morris (2002), Weinstein and Yildiz (2003),
Weinstein and Yildiz (2004), and Dekel et al. (2005b).
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t i = t−i = 0. Indeed, if t i = t−i 6= 0, then t i assigns probability 1 to stateω= 1 conditional
on t−i , but if t i = t−i = 0, then both states have equal conditional probability.

For t i = t−i 6= 0, the set {−t i ,+t i } × {−t−i ,+t−i } is a belief-closed subspace that is
isomorphic to the first type space from the introduction. Thus, all actions are rational-
izable for these types. However, the belief-closed subspace {0} × {0} is isomorphic to
the second type space and hence action c i is the unique rationalizable action for types
t i = t−i = 0. Thus, for this finite game with a finite set of states of the world and contin-
uous belief-mapping, the rationalizable correspondence is not upper hemicontinuous.

7.4 Universal type space for the measurable case

Following the literature, we say that a type space U over a space of basic uncertainty
X is universal among type spaces with property Y if for every such type space there
is a unique mapping into U that preserves beliefs. Mertens et al. (1994) showed that
there exists a universal type space for all continuous type spaces, assuming X is a Polish
space. On the other hand, Heifetz and Samet (1999) showed that there is no universal
type space for measurable (not necessarily continuous) type spaces when X is assumed
only to be measurable. Our Theorem 1, whose proof is only a slight adaptation of the one
in Mertens et al. (1994), is a positive result for an in-between case. It shows the existence
of a universal measurable type space under the assumption that X is Polish. This may
be comforting because while it is questionable to assume some particular structure on
a type space (as it is nothing more than an artificial modeling construct), there may be
good reason to assume structure on the physical world X .

7.5 Type-space independent description of U (∆Ω).

We sought in this paper a characterization of interactive beliefs that is necessary and
sufficient to identify rationalizable behavior. We wanted this characterization to be de-
scribable in natural language terms that are independent of any modeling device such
as a type space. Here we observe that just as with conventional hierarchies of belief, a
player’s ∆-hierarchy can be elicited by a sequence of questions concerning beliefs and
higher-order beliefs. One way to pose these is to begin with the following basic question:
“Given any set of actions for your opponent, what is the set of distributions over actions
and states of the world that you could face?” The answer to this question reveals the
player’s first-order ∆-belief. After receiving an answer to this question, the remainder
of the hierarchy is elicited analogously as with conventional hierarchies: “Given any set
of actions for your opponent, what would you consider possible within the set of joint
probability distributions over the state, your opponent’s action, and your opponent’s
answer to the previous question?”

7.6 Other solution concepts

The universal type space U (Ω) is the smallest (i.e. most parsimonious) type space that
is complete in terms of conventional hierarchies of belief. We showed however that in
order to analyze games using the concept of rationalizability, we need the larger space
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U (∆Ω). Can we conclude that U (∆Ω) is the right universal type space? Certainly not: de-
pending on the application the modeler will need a different property of players’ infor-
mation, and this will correspond to potentially different type spaces that are “universal”
with respect to this property. For example, we may carry out a similar investigation for
other solution concepts such as Bayesian Nash equilibrium (BNE). It is easy to construct
examples to show that even U (∆Ω) is not rich enough for BNE: two types can have the
same ∆-hierarchy and yet play differently in BNE.23 This raises a few questions. First,
is there a primitive characteristic of information that is sufficient to characterize BNE
behavior? Second, is there a single universal type space that is sufficient to characterize
behavior in all “standard” solution concepts?

The first question is a topic for further research. For the second question we have a
partial answer. Suppose there exists a type space P(Ω) with the property that any type
space can be mapped by an injective, belief-preserving type mapping into P(Ω). Then
P(Ω) would be the type space we seek (although it may not be the most parsimonious).
Effectively, P(Ω)would include a complete replica of every type space.

In general such a type space will not exist. However, if we restrict attention to the
category of Polish type spaces, then existence can be established.

CLAIM. There is a Polish type space over Ω, P (Ω) ∈ Tw (Ω), such that for any Polish type
space T ∈Tw (Ω), there is an injective, belief-preserving type mapping πT : T → P (Ω).

Details are available from the authors.

APPENDIX

A. SKETCH OF PROOF OF THEOREM 1

The proof is a minor adaptation of Mertens et al. (1994). We mention here only the
changes necessary to accommodate type spaces with weakly measurable (i.e. not nec-
essarily continuous) belief mappings. The remainder is identical.

We first recall the definition of a projective limit. Suppose that we have a sequence
of Polish spaces {Pn}n≥0 together with a sequence of continuous mappings hn : Pn+1→
Pn . Then the projective limit is a subset P ⊆ P0 × P1 × · · · of all points

�

p0, p1, . . .
�

such
that hn
�

pn+1
�

= pn for all n . Such a set is a Polish space in the product topology. The
induced projection mappings Hn : P→ Pn are continuous.

Mertens et al. (1994) construct the universal type space U (X ) for Polish X as the
projective limit of hierarchies of beliefs. Hierarchies of beliefs of order n are defined
inductively as follows

U 0
i = {∗}

U n
i =∆
�

X ×U n−1
−i

�

.

23The simplest example is a game of complete information, i.e. when Ω is a singleton. Then any type in
any type space over Ω has the same (degenerate)∆-hierarchy. But the set of BNE outcomes expands as the
type space expands due to added possibilities for correlation in behavior.
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The mappings hn
i : U n+1

i →U n
i are defined inductively by

h0
i (u i ) = ∗ for all u i ∈U 1

i

hn
i =∆
�

idX ×hn−1
−i

�

.

We take Ui (X ) to be the projective limit of the system
�

U n
i , hn

i

�

. The induced projection
mappings H n

i : Ui (X )→U n
i are continuous and satisfy

H n
i = hn

i ◦H n+1
i .

Mertens et al. (1994) show that one can construct a continuous belief mapping µ∗i :
Ui (X )→∆(X ×U−i (X ))with the property that for any u i ∈Ui (X ),

H n
i (u i ) =∆
�

idX ×H n−1
−i

�

(µ∗i (u i )). (12)

This property implies that the mapping µ∗i is a homeomorphism between Ui (X ) and
∆(X ×U−i (X )). (Observe that for any u i ∈ Ui (X ), there is exactly one belief µ∗i such
that (12) is satisfied: by the definition of the projective limit, two different measures on
∆(X ×U−i (X )) have to have different images under ∆

�

idX ×H n−1
−i

�

for at least one n .

Similarly, for any two u i 6= u ′i , H n
i (u i ) 6=H n

i

�

u ′i
�

for at least one n and µ∗i (u i ) 6=µ∗i
�

u ′i
�

.
The inverse mapping

µi →
¦

∆
�

idX ×H 0
−i

�

�

µi
�

, . . . ,∆
�

idX ×H n−1
−i

�

�

µi
�

, . . .
©

is naturally continuous.)
Mertens et al. (1994) show that if the type space T is continuous (the belief mapping

is continuous) then there exists a sequence of continuous u T,n
i : Ti →U n

i , hn
i ◦u T,n+1

i =
u T,n

i , that extend to the continuous mapping u T
i : Ti →Ui , which is the unique mapping

that preserves beliefs. The difference in our case is that we are not able to guarantee the
continuity of the mappings u T,n

i . However, we show that weak measurability of the be-
lief mapping assures that the maps u T,n

i defined exactly in the same way as in Mertens
et al. (1994) are measurable. Moreover, they generate pointwise converging measurable

mappings u
T,n ,u ∗i
i : Ti →Ui , for some u ∗i ∈Ui , which converge to the measurable map-

ping u T
i : Ti →Ui . For the same reasons, this mapping preserves beliefs.

Precisely, we use the following lemma.

LEMMA 7. Let T ∈Tw (X ) and suppose that there is a Polish space B and measurable map-
ping φ−i : T−i → B. Then the mapping Φi : Ti →∆(X × B ) defined by

Φi (t i ) =∆
�

idX ×φ−i
�

µi (t i )

is measurable.

PROOF. We need to check whether for any measurable function f : X × B → R the sets
�

t i :Φi (t i )
�

f
�

< 0
	

are measurable. But
�

t i :Φi (t i )
�

f
�

< 0
	

=
�

t i :µi (t i )
�

f
�

x ,φ−i (t−i )
��

< 0
	

and the last set is measurable by the definition of weak measurability of µi (t i ). �
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Choose now an arbitrary u ∗i ∈ Ui and construct mappings u T,n
i : Ti → Ui with

u T,n
i (t i ) = u ∗i and later inductively

u T,n+1
i =∆
�

idX ×u n
−i

�

µi (t i ) .

By the lemma, each of these mappings is measurable. Moreover, they converge point-
wise to the mapping u T

i , which is also measurable (as a pointwise limit of measurable
mappings). Exactly as in Mertens et al. (1994), we can verify that it is the unique belief-
preserving mapping.

B. PROOF OF LEMMA 5

We begin with some notation. For a fixed game G =
�

A j , u j

�

∈ G , define the following
set of continuous bounded functions f :∆Ω×K A−i → [0,∞):

FG =







f (τ, K ) = max
k=1,...,N1

sup
a 1,...,a N2∈K

τ
�

ψ
�

k , a 1, . . . , a N2 ,ω
��

:

for some natural N1, N2 and
continuous bounded functionψ : {1, . . . , N1}×AN2

−i ×Ω→ [0,∞)







.

On the first coordinate τ∈∆Ω, the functions f ∈FG are “piecewise linear” and convex.
On the second coordinate K ∈ K A−i , they are set-increasing: for any two sets K ⊆ K ′,
K , K ′ ∈ K A−i , f (τ, K ) ≤ f (τ, K ′). Next, define the set of differences of functions from
FG

L G =
¦

f − g : f , g ∈FG
©

⊆C (∆Ω×K A−i ) .

The following stronger version of Lemma 5 will be used also in the proof of Proposition 5.

LEMMA 5′. For any game G the collection of sets
�

µ :µ
�

f
�

< 0
	

⊆ ∆(∆Ω×K A−i ) for
f ∈ L G generates the weak∗ topology on ∆(∆Ω×K A−i ). In particular, for any µ,µ′ ∈
∆(∆Ω×K A−i ), µ 6=µ′ there is a function f G ∈FG , such that

µ
�

f G (τ, A)
�

6=µ′
�

f G (τ, A)
�

.

The following notation and preliminary results will be used in the proof. Let H de-
note the Hilbert cube [0, 1]N. SinceΩ is Polish, there is a countable sequence of functions
h∗k :Ω→ [0, 1] that define a compatible metric on∆Ω,

d∆Ω
�

τ,τ′
�

=
∞
∑

k=1

1

2k

�

�

�τ
�

h∗k
�

−τ′
�

h∗k
�

�

�

� ,

and a mapping H :∆Ω→H with

H (τ) =
�

τ
�

h∗1
�

,τ
�

h∗2
�

, . . .
�

.

The mapping H embeds ∆Ω (with the weak* topology) in the Hilbert cube (with the
product topology). Suppose we have a familyF of continuous functions f : H×K A−i →
R such that the collection of sets

�

µ :µ
�

f (h, A)
�

< 0
	

⊆∆(H×K A−i )
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is a subbase for the weak* topology on∆(H×K A−i ) (in which case we say thatF gener-
ates the topology). Then, because H is an embedding, it will follow that the correspond-
ing familyF ′ ⊂C (∆Ω×K A−i )with

F ′ = { f ′ : f ′(τ, K ) = f (H (τ), K ) for some f ∈F }

generates the topology on∆(∆Ω×K A−i ). The strategy of proof is to find such anF so
that the correspondingF ′ is included inL G .

For each natural number n , define the following set of continuous functions f :
[0, 1]n ×K A−i → [0,∞):

Fn =







f (z 1, . . . , z n , A) = max
k=1,...,N1

sup
a 1,...,a N2∈A

ηk
�

a 1, . . . , a N2

�

· z :

for some natural numbers N1, N2 and
some continuous bounded functions η1, . . . ,ηN1 : AN2→ [0, 1)n







where · is a scalar product of two vectors in Rn . Next, define the set of differences of
functions fromFn

Ln =
�

f − g : f , g ∈Fn
	

⊆C
�

[0, 1]n ×K A−i
�

.

We have a lemma.

LEMMA 8. The set Ln is uniformly dense in the set C
�

[0, 1]n ×K A−i
�

.

PROOF. This is a standard argument applying the lattice version of the Stone-Weierstrass
theorem (see Aliprantis and Border (1994, Theorem 7.45)). We need to verify thatLn :

• is closed under scalar multiplication: If ( f −g )∈Ln , then for any λ∈R, λ( f −g )∈
Ln as well;

• contains a constant function: 1∈Ln ;

• is closed under finite sums: first note that for any f , g ∈ Fn , z = (z 1, . . . , z m ) ∈
[0, 1]n and K ∈K A−i

f (z , K )+ g (z , K ) = max
k=1,...,N

f
1

sup
a 1,...,a

N
f
2
∈K
ηk
�

a 1, . . . , a
N

f
2

�

· z

+ max
l=1,...,N

g
1

sup
a 1,...,a

N
g
2
∈K
ν l
�

a 1, . . . , a N
g
2

�

· z

= max
k=1,...,N f

l=1,...,Ng

sup
a 1,...,a

N
f
2
∈K

a 1,...,a
N

g
2
∈K

�

ηk
�

a 1, . . . , a
N

f
2

�

+ν l
�

a 1, . . . , a N
g
2

�

�

· z

so that f +g ∈Fn . But this implies that for any ( f −g ), ( f ′−g ′)∈Ln we also have
�

f + f ′
�

−
�

g + g ′
�

∈Ln ;
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• is closed with respect to taking the maximum of two functions: for any f , g ∈Fn ,
z ∈ [0, 1]n , K ∈K A−i

max
�

f (z , A) , g (z , A)
	

=max











max
k=1,...,N

f
1

sup
a 1,...,a

N
f
2
∈K
ηk
�

a 1, . . . , a
N

f
2

�

· z ,

maxl=1,...,N
g
1

sup
a 1,...,a

N
g
2
∈K
ν l
�

a 1, . . . , a N
g
2

�

· z











= max
k=1,...,N

f
1 +N

g
2

sup
a 1,...,a

N
f
2 +N

g
2
∈K
ϕk
�

a 1, . . . , a
N

f
2 +N

g
2

�

· z

where

ϕk
�

a 1, . . . , a
N

f
2 +N

g
2

�

=ηk
�

a 1, . . . , a
N

f
2

�

for k ≤N
f

1 and

ϕk
�

a 1, . . . , a
N

f
2 +N

g
2

�

= ν
k−K f
m

�

a
N

f
2 +1

, . . . , a
N

f
2 +N

g
2

�

for N
f

1 < k ≤N
f

1 +N
g
1 .

Then h =max
�

f , g
�

∈Fn . Together with the fact that

max
�

f − g , f ′− g ′
	

=max
�

f + g ′, f ′+ g
	

−
�

g + g ′
�

and the previous point, it implies that max
�

f − g , f ′− g ′
	

∈ Ln for any f − g ,
f ′− g ′ ∈Ln ;

• separates points: for any z , z ′ ∈ [0, 1]n , z 6= z ′, there is vector η ∈ Rn , such that
η·z 6=η·z ′. Similarly, for any K , K ′ ∈K A−i , K 6= K ′, there is a continuous function
s : A−i → [0, 1], such that

f (A) = sup
a∈K

s (a ) = 1> 0= sup
a∈K ′

s (a ) = f
�

A ′
�

. �

Finally we can prove Lemma 5′. Any f ∈C ([0, 1]n ×K A−i ) can be viewed as an ele-
ment f ′ ∈ C (H×K A−i ) by writing f ′(h, K ) = f (h1, . . . , hn , K ). By the Stone-Weierstrass
theorem (algebraic version, see Aliprantis and Border (1994, Theorem 7.46)) the subset
∪n C ([0, 1]n ×K A−i ) is uniformly dense in C (H×K A−i ). By Lemma 8, the familyLn is
uniformly dense in C ([0, 1]n ×K A−i ). Thus ∪nLn is uniformly dense in ∪n C ([0, 1]n ×
K A−i ) and hence in C (H×K A−i ). We conclude that the family ∪nLn generates the
topology on∆(H×K A−i ) (see Aliprantis and Border (1994, Theorem 12.2)).

The proof is now completed by showing that each f ∈Ln corresponds to a function
f ′ belonging toL G by the formula f ′(τ, K ) = f (H (τ), K ). By the linear structure ofL G

it suffices to show that for each g ∈Fn , the composition g ◦H :∆Ω×K AG
−i →R belongs

toFG . This is verified by noting that

(g ◦H )(τ, K ) = max
k=1,...,N1

sup
a 1,...,a N2∈K

ηk �a 1, . . . , a N2

�

·
�

τ[h∗1 (ω)], . . . ,τ[h∗n (ω)]
�

= max
k=1,...,N1

sup
a 1,...,a N2∈A

τ





n
∑

m=1

h∗m (ω)η
k
m

�

a 1, . . . , a N2

�



 .

Since
∑n

m=1 h∗m (ω)η
k
m

�

a 1, . . . , a N2

�

is a bounded continuous function mapping {1, . . . ,

N1}×
�

AG
−i

�N2 ×Ω into R, we conclude that g ◦H is an element ofFG . �
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C. RESULTS ON MEASURABILITY

C.1 Proof of Lemma 1

We need the following result.

LEMMA 9. Let A and B be measurable spaces and g : A × B → [0, 1] a jointly measurable
map. If m : A → ∆(B ) is measurable, then the map Lg : A → R defined by Lg (a ) =
m (a )[g (a , ·)] is measurable.

PROOF. There exists a sequence of simple functions g n : A×B→R such that g n ↑ g and
by the definition of the Lebesgue integral, for any probability measure ν ∈∆(A × B ),

ν [g n ]→ ν [g ].

In particular, for any given a ∈ A, if ν is the measure whose marginal on B is m (a ) and
whose marginal on A is δa ,

Lg n (a ) = ν [g n ]→ ν [g ] = Lg (a ).

Thus, if we can show that L f is measurable for all simple functions f , then we will have
shown that Lg is measurable as the pointwise limit of measurable mappings.

First consider f = 1α×β for α ⊂ A and β ⊂ B (measurable). We have L f (a ) = 1α(a ) ·
m (a )(β )which is measurable since m was assumed to be measurable. Thus, L f is mea-
surable for all f that are indicators of product sets. Now for any finite k , let α1, . . . ,αk

and β1, . . . ,βk be measurable subsets of A and B respectively and note that for f =
∏k

l=1 1αl×βl ,

L f (a ) =
∏

l

1αl ·m (a )(∩l βl )

is measurable. Thus if f = 1∩l (αl×βl ) =
∏

l 1αl×βl , then L f is measurable, and if

f = 1∪l (αl×βl ) =
∑

l

1αl×βl −
∑

S⊂{1,...,k }
(|S| −1)
∏

l ∈S
1αl×βl

then L f is measurable as a linear combination of measurable functions. Note also that
L1¬E = L1−1E = 1− L1E . Thus L f is measurable for all indicator functions f of sets in the
algebra generated by the product sets.

Now consider any sequence Xn with Xn ⊂ A × B , Xn ⊂ Xn+1 for all n and ∪n Xn = X .
The corresponding sequence L1Xn is an increasing sequence of maps converging point-
wise to L1X . Thus if L1Xn are measurable for all n , so is L1X . It follows that the collection
of sets X such that L1X is measurable is a monotone class. Since it includes the algebra
generated by the product sets, by the monotone class lemma it includes the correspond-
ingσ-algebra, i.e. the product sigma-algebra on A×B . Finally, since any simple function
f : A × B→R has the form

f (a ,b ) =
k
∑

j=1

c j 1X j (a ,b )



58 Ely and Pęski Theoretical Economics 1 (2006)

for some coefficients c j and measurable sets X j ⊂ A×B , any such L f is measurable as a
linear combination of measurable functions. �

PROOF OF LEMMA 1. We must show that for any measurable f :∆Ω×T−i →R, the map-
ping

t i →µ∆i (t i )[ f ]

is measurable. Define g (t i , t−i ) = f (βi (t i , t−i ), t−i ). Note that g is jointly measurable and

µ∆i (t i )[ f ] =µi (t i )[g (t i , ·)].

Now apply Lemma 9. �

C.2 Proof of Lemma 4 and Proposition 5

PROOF OF LEMMA 4. By the monotone class theorem and the choice of topology onRi ,
we need to check that for any finite number of games G 1, . . . ,G k ∈G and open set K A ⊆
K AG 1

i × · · ·×K AG n

i , the set

�

ρT
i

�−1
(K A ×
∏

G∈G ,G 6=G i for i=1,..,k

K AG
i ) =
�

RG 1,T
i × · · ·×RG k ,T

i

�−1
(K A)

is measurable. Consider the product game G =G 1× · · · ×G k =
�

AG
i , u G

i

�

. Observe that

K A is an open subset K A ⊆K AG
i and RG 1,T

i × · · ·×RG k ,T
i = RG ,T

i . Now by Proposition 2,

the set
�

RG ,T
i

�−1
(K A) is measurable in Ti . �

For the proof of Proposition 5 we need a lemma identifying some measurable sub-
sets of rationalizable rules.

LEMMA 10. For any game G = (A i , u i ) ∈ G , for any closed subset A ′ ⊆ A i , the subset of
rationalizable rules {ri ∈Ri : ri (G )⊆ A ′} is closed inRi .

PROOF. For closed A ′, the setK A ′ = {K ∈K A i : K ⊂ A ′} is closed inK A i (see Alipran-
tis and Border (1994, Theorem 3.63)). Thus, by the definition of the product topology on
Ri ,

�

ri ∈Ri : ri (G )⊆ A ′
	

= {ri ∈Ri : ri (G )∈K A ′}

is closed. �

PROOF OF PROPOSITION 5. Let D be the collection of all subsets E of ∆Ω×R−i such
that the mapping

ri →µRi (ri )[1E ]

is Borel measurable. We prove the proposition by showing that D includes all measur-
able sets.
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LetP ∗(G ) be the collection of all finite subsets of G , and define

C =
⋃

Γ∈P ∗(G )

(

V =V 0×
∏

G∈G
V G :

V 0 ⊂∆Ω, V G ⊂K AG
−i are measurable

and V G =K AG
−i for all G /∈ Γ

)

.

Note that C is an algebra (closed under taking complements, finite intersections and
unions) and generates the product topology and hence the σ-algebra on∆Ω×R−i . We
first show thatC ⊂D .

Consider any element V ∈ C for which Γ = {G } is a singleton. If we can show that
{ri : marg∆Ω×K AG

−i
µRi (ri )(V 0 × V G ) ∈ I } is a measurable set of rules for every interval

I ⊂ [0, 1], it will follow that V ∈ D. Since {µ ∈ ∆(∆Ω×K AG
−i ) : µ(V 0 × V G ) ∈ I } is a

measurable set, it suffices to show that marg∆Ω×K AG
−i
µRi : Ri → ∆(∆Ω×K AG

−i ) is a
measurable mapping.

By Lemma 5′ there is a base for the Borelσ-algebra on∆Ω×K AG
−i consisting of sets

of the form
W f = {µ :µ[ f ]< 0}

for all functions f ∈ L G . In the course of the proof of Theorem 3, we showed that for
any f G ∈ FG and s ∈ R, there is a game G̃ and a closed subset of actions Ã ∈ A−i such
that for any type space T ∈Ts (Ω) the following two sets of types t i ∈ Ti are equal

n

t i : RG̃ ,T
i (t i )⊆ Ã
o

=
¦

t i :$G ,T (t i )
�

f G
�

< s
©

.

This implies that the following two sets of rationalizable rules are equal

¦

ri ∈Ri : ri

�

G̃
�

⊆ Ã
©

=







ri ∈Ri : marg
∆Ω×K AG

−i

µRi (ri )
�

f G
�

< s







.

By Lemma 10, the first set is measurable. Now since f = f G
1 − f G

2 for some f G
1 , f G

2 ∈FG ,
we have

W f =
⋃

x1,x2∈Q,
x1+x2<0

⋂

m=1,2

¦

µ :µ[ f G
m ]< xm

©

,

whereQ is the set of rational numbers. Then






marg

∆Ω×K AG
−i

µRi







−1

(W f ) =
⋃

x1,x2∈Q,
x1+x2<0

⋂

m=1,2







ri ∈Ri : marg
∆Ω×K AG

−i

µRi (ri )
�

f G
m

�

< xm







is measurable as countable union of finite intersections of measurable sets. Therefore
the inverse image of every set in a base for the sigma-algebra is measurable and this
implies that marg∆Ω×K AG

−i
µRi is measurable. (See Aliprantis and Border (1994, Lemma

8.16).) Now consider an element V ∈C for whichΓ is an arbitrary finite set. Consider the
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product game G̃ =
∏

ΓG , where the product set V G̃ =
∏

G∈ΓV G is a measurable subset

of K AG̃
−i . By the product structure, for any rationalizable rule r−i (G̃ ) =

∏

G∈Γ r−i (G ).
Thus if we define V ′ = V 0 ×V G̃ ×

∏

G /∈ΓK AG ′
−i , we have 1V ′ = 1V , and we have already

shown that V ′ belongs to D.
We have shown C ⊂ D . Now consider any sequence of measurable subsets En ⊂

∆Ω×R−i such that En ⊂ En+1, E ∈D , and let E =∪En . The sequence of indicator func-
tions 1En increases pointwise to 1E . By countable additivity, µRi (ri )(E ) = limµRi (ri )(En ),
and hence for any open interval I ,

¦

ri :µRi (ri )[1E ]∈ I
©

=
⋃

n

⋂

m>n

¦

ri :µRi (ri )[1En ]∈ I
©

which is measurable. Thus E ∈ D and D is a monotone class that includes the algebra
C . By the monotone class lemma,D includes all Borel sets. �

D. PROOF OF LEMMA 6

PROOF. We begin with a simple observation: For any belief-preserving type mapping
ψ : S → T , S, T ∈ Tw (X ), for any type s i ∈ Si , and for any measurable subsets B ,C ⊆
T−i ×X we have

µT �ψ (s i )
�

(B ) =µS (s i )
�

�

ψ−i × idX
�−1 (B )
�

,

µT �ψ (s i )
�

(B |C ) =µS (s i )
�

�

ψ−i × idX
�−1 (B ) |
�

ψ−i × idX
�−1 (C )
�

.

The first is just the definition of a belief-preserving type mapping, while the second is a
consequence of the first.

Part 1. Suppose that φ∆ : S → T preserves beliefs. For any (s i ,τi ) ∈ Si ×∆Ω, define
φ(s i ,τi ) : S−i ×∆Ω→ T−i ×∆Ωwith

φ(s i ,τi ) (s−i ,τ−i ) =
�

φ∆ (s−i ) ,τ−i

�

.

We check that (2) holds: for any subset B ⊆ T−i ×∆Ω,

marg
T−i×∆Ω

µT×∆Ω �φ (s i ,τi )
��

B ′
�

= marg
T−i×∆Ω

µT×∆Ω
�

φ∆ (s i ) ,τ
�

(B )

=µT
�

φ∆ (s i )
�

((t i ,τ−i )∈ B )

=µSi (s i )
�

�

φ∆× idX

�−1
(B )
�

= marg
S−i×∆Ω

µS×∆Ω (s i ,τi )
�

φ−1
(s i ,τi )

(B )
�

where the third equality comes from the observation above and the fact that φ∆ pre-
serves beliefs. We verify immediately thatφ satisfies (3) and (4).

Part 2. If φ preserves conditional beliefs, then there is for any (s i ,τi ) ∈ S ×∆Ω a
measurable mappingφ(s i ,τi ) : S−i ×∆Ω→ T−i ×∆Ω such that equations (2), (3), (4) hold.
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Equation (4) and the definition of beliefs in the type space T × ∆Ω imply that
proj∆Ωφ(s i ,τi ) (s−i ,τ−i ) =τ−i . The definition of beliefs in the space T ×∆Ω together with
the assumption that different types in T have different beliefs imply that projT ◦φ(s i ,τi ) =
projT ◦φ.

These two facts taken together lead us to the conclusion that the mapping φ(s i ,τi )

does not depend on (s i ,τi ):

φ(s i ,τi ) (s−i ,τ−i ) =
�

proj
T
φ (s−i ,τ−i ) ,τ−i

�

=

��

φ∆ ◦proj
S

�

×proj
∆Ω

�

(s−i ,τ−i ) =: φ̂−i (s−i ,τ−i ) .

It is immediate to see that the type mapping φ̂ : S×∆Ω→ T ×∆Ω preserves conditional
beliefs with a dual equal to itself, φ̂i = φ̂(s i ,τi ) for any (s i ,τi ). A straightforward argument
shows that φ̂ preserves beliefs.

Then, for any s i ∈Si , for any t−i ∈ T−i , any measurable B ⊆∆Ω,

C∆Ωµ
S
i (s i )
�

�

φ∆i
�−1
(t−i )
�

(B ) =µS
i (s i )
�

�

φ∆i
�−1
(t−i )× B |
�

φ∆i
�−1
(t−i )×∆Ω
�

=µS×∆Ω
i (s i ,τ)
¦

φ̂−1 ({t−i }× B )×Ω | φ̂−1 ({t−i }×∆Ω)×Ω
©

=µT×∆Ω
i

�

φ̂ (s i ,τ)
�

{{t−i }× B ×Ω | {t−i }×∆Ω×Ω}

=µT
i

�

φ∆ (s−i )
�

({t−i }× B | {t−i }×∆Ω)

=C∆Ωµ
T
i

�

φ∆i (s i )
�

(t−i ) (B ) ,

andφ∆ preserves beliefs (the third equality comes from the second observation above).
�

E. UPPER HEMICONTINUITY OF THE RATIONALIZABLE CORRESPONDENCE

This appendix contains the proof of Proposition 3. The proof builds on two lemmas.

LEMMA 11. If T is∆-continuous and G is a compact, continuous game, then Ui (a i ,σ∆−i |
t i ) is jointly continuous in (a i ,σ∆−i , t i ).

PROOF. First we show that πi is jointly continuous. Pick M > sup |u i (a ,ω)| (recall that
we assume that u i is bounded for this class of games.) Let (a k , t k )→ (a∞, t∞) ∈ A ×T .
The set {t k }∞k=1 is compact, and so by ∆-continuity, the corresponding family of mea-
sures {βi (t k )} ⊂ ∆Ω is also compact. Because Ω is a Polish space, the family is tight,
i.e. for every ε > 0, there exists a compact K ε ⊂ Ω such that βi (t k )(K ε) > 1− ε for all
k ∈ {1, . . . ,∞}. We have

�

�πi (a k , t k )−πi (a∞, t∞)
�

�≤

�

�

�

�

�

∫

K ε
u i (a k , ·)dβi (t k )−

∫

K ε
u i (a∞, ·)dβi (t∞)

�

�

�

�

�

+2εM .
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Since K ε is compact and u i is jointly continuous,

sup
ω∈K ε

�

�u i (a k ,ω)−u i (a∞,ω)
�

�→ 0

i.e., the sequence of functions u i (a k , ·) : K ε → R converges uniformly to u i (a∞, ·). It
follows that

�

�

�

�

�

∫

K ε
u i (a k ,ω)dβi (t k )−

∫

K ε
u i (a∞, ·)dβi (t∞)

�

�

�

�

�

→ 0

and so

lim sup
k

�

�πi (a k , t k )−πi (a∞, t∞)
�

�

≤ lim sup
k

�

�

�

�

�

∫

K ε
u i (a k , ·)dβi (t k )−

∫

K ε
u i (a∞, ·)dβi (t∞)

�

�

�

�

�

+2εM

= 2εM

and since ε was arbitrary, we have shown πi (a k , t k )→πi (a∞, t∞).
Having shown thatπi is jointly continuous, we can apply exactly the same argument

to show that

Ui (a i ,σ∆i | t i ) =

∫

A−i×T−i

πi (a i , ·, t i , ·)dσ∆i (a−i , t−i )

is jointly continuous as well. �

LEMMA 12. Suppose T is a continuous type space and let Si ⊂ Ti be a compact subset of
types and B ⊂ A−i ×T−i is a closed assessment. Then the correspondence

Σ∆(B | ·) : Si ⇒∆(T−i ×A−i )

has compact graph.

PROOF. The proof uses the following result (see Aliprantis and Border (1994, Theorem
12.20)): If X is a Polish space, then a family F ⊂ ∆(X ) has compact closure if and only
if F is tight, i.e. for every ε > 0 there is a compact K ⊂ X such that ν (K ) > 1− ε for all
ν ∈F .

Let (t k
i ,σ∆,k
−i ) be a sequence from the graph. Since Si is assumed compact, t k

i
has a subsequence converging to some t i ∈ Si . Now pick ε > 0. Since Si is com-
pact, by the continuity of T so is µT

i (Si ) = {µT
i (t i ) : t i ∈ Si } and by the continuity of

marginals, so is margT−i
µT

i (Si ). By the above result, there is a compact K ⊂ T−i such that
margT−i

µT
i (t i )(K )> 1−ε for all t i ∈Si . Thus for any t i ∈Si andσ∆−i ∈Σ∆(B | t i ), we have

σ∆,t i
−i (K ×A−i ) =margT−i

µT
i (t i )(K )> 1−ε. Since K ×A−i is compact, this shows that the

family
⋃

t i∈Si

Σ∆(B | t i )
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is tight and therefore has compact closure.
Because σ∆,k

−i is a sequence from this set, it has a convergent subsequence σ∆,l
−i →

σ∆−i . The proof is concluded by showing thatσ∆−i ∈Σ∆(B | t i ).

1. By definition, margT−i
σ∆,l
−i = margT−i

µT
i (t

l
i ). Because the mapping T is contin-

uous, margT−i
µT

i (t
l
i )→ margT−i

µT
i (t i ) and since margT−i

σ∆,l
−i → margT−i

σ∆−i , we
have margT−i

σ∆−i =margT−i
µT

i (t i ).

2. The set of measures assigning probability 1 to a given closed set is closed. Since
σ∆,l
−i (B ) = 1 for all l , we haveσ∆−i (B ) = 1 as well. �

For the next result, we need to define a procedure of iterative elimination of not-best
responses. For any game G and any type space T define inductively assessments:

RG ,T
0,i = Ti ×A i and for any n > 0 let RG ,T

n ,i (t i ) = B
�

RG ,T
n−1 | t i

�

.

PROOF OF PROPOSITION 3. We start by showing inductively that each RG ,T
n ,i is a closed

correspondence. It is obviously true for n = 0. Suppose now it is true for some arbitrary
n , and let (t k

i , a k
i )→ (t i , a i ) with (t k

i , a k
i ) ∈ RG ,T

n ,i . Then for each k there is a conjecture

σ∆,k
−i ∈Σ∆(R

G ,T
n−1,−i | t

k
i ) such that a k

i is a best response of t k
i againstσ∆,k

−i . By Lemma 12,

there is a subsequenceσ∆,l
−i converging toσ∆−i ∈Σ∆(R

G ,T
n−1,−i | t i ).

Finally, by Lemma 11,

Ui (a l
i ,σ∆,l
−i | t

l
i )→Ui (a i ,σ∆−i | t i )

Ui (z i ,σ∆,l
−i | t

l
i )→Ui (z i ,σ∆−i | t

l
i ).

Thus, a l
i is a best response of t l

i against σ∆,l
−i for all l implies that a i is a best response

of t i againstσ∆−i . We have shown that (t i , a i )∈RG ,T
n ,i and hence that the latter is closed.

The first step implies that the correspondence RG ,T
i is closed as an intersection of

closed sets. Now, we move to show that RG ,T
i =RG ,T

i . Because RG ,T
i has the fixed-point

property, we have RG ,T
i ⊂ RG ,T

k ,i for every k , hence RG ,T
i is contained in RG ,T

i . To show

equality, therefore, it suffices to show thatRG ,T
i also has the fixed-point property and is

therefore a subset of RG ,T
i . We need to show

RG ,T
i = {(t i , a i ) : a i ∈ B (RG ,T | t i )}.

Suppose a i is a best response of t i against σ∆−i ∈ Σ∆(RG ,T | t i ). Then σ∆−i ∈ Σ∆(R
G ,T
k | t i )

for every k and hence (t i , a i )∈RG ,T
k ,i for every k . This shows that (t i , a i )∈RG ,T

i .

Suppose (t i , a i ) ∈ RG ,T
i , i.e. (t i , a i ) ∈ RG ,T

k ,i for every k . Then for each k there is a

σ∆,k
−i ∈ Σ∆(R

G ,T
k | t i ) such that a i is a best response of t i against σ∆,k

−i . Since RG ,T
i is

closed, we can use Lemma 12 to extract a convergent subsequence σ∆,l
−i →σ

∆
−i . Repeti-

tion of the continuity argument above shows that a i is a best response of t i againstσ∆−i .
In order to conclude that (t i , a i ) is a best response to some conjecture from Σ∆(RG ,T |
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t i ), it is enough to check thatσ∆−i ∈Σ∆(RG ,T | t i ). Notice however that this is immediate
consequence of two facts:

marg
T−i

σ∆−i = lim
l→∞

marg
T−i

σ∆,l
−i =marg

T−i

µi (t i )

σ∆−i (R
G ,T
−i ) = lim

n→∞
σ∆−i (R

G ,T
n ,i ) = lim

n→∞
lim
l→∞

σ∆,l
−i (R

G ,T
n ,i ) = 1.

The last equality follows from the definition of σ∆,l
−i ∈ Σ∆(R

G ,T
k (l ) | t i ) for some k (l ): for

k ≤ k (l )we haveσ∆,l
−i (R

G ,T
k ,i ) =σ

∆,l
−i (R

G ,T
k (l ),i ) = 1. This ends the proof. �
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